dc.contributor.author |
Gintides, D |
en |
dc.contributor.author |
Kiriaki, K |
en |
dc.date.accessioned |
2014-03-01T01:08:58Z |
|
dc.date.available |
2014-03-01T01:08:58Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0266-5611 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10759 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
HARMONIC ACOUSTIC-WAVES |
en |
dc.subject.other |
INVERSE |
en |
dc.title |
On the continuity dependence of elastic scattering amplitudes upon the shape of the scatterer |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0266-5611/8/1/007 |
en |
heal.identifier.secondary |
007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0266-5611/8/1/007 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this paper the transmission problem of linear elasticity in R2 is considered. We assume a system of quasi-Fredholm singular integral equations which describes the scattering process and we use an asymptotic analysis to derive relations for the far-field patterns. We establish a continuity dependence of the far-field patterns on the scatterer's shape. This result holds for a set of admissible functions which are considered as parametrization of the boundary of the inclusion. Continuity properties of this nature secure the stability of the inverse scattering problem. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Inverse Problems |
en |
dc.identifier.doi |
10.1088/0266-5611/8/1/007 |
en |
dc.identifier.isi |
ISI:A1992HG67400007 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
95 |
en |
dc.identifier.epage |
118 |
en |