HEAL DSpace

On the reliability of classical divergence instability analyses of Ziegler's nonconservative model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kounadis, AN en
dc.contributor.author Avraam, T en
dc.contributor.author Mallis, J en
dc.date.accessioned 2014-03-01T01:08:59Z
dc.date.available 2014-03-01T01:08:59Z
dc.date.issued 1992 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10772
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0026835572&partnerID=40&md5=b0880dfd2c18d0dcf5d2a6a0861935f3 en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Dynamics en
dc.subject.other Classical Divergence Instability Analysis en
dc.subject.other Dynamic Analysis en
dc.subject.other Non-Dissipative Autonomous Systems en
dc.subject.other Nonlinear Static Analysis en
dc.subject.other Ziegler's Nonconservative Model en
dc.subject.other System Stability en
dc.title On the reliability of classical divergence instability analyses of Ziegler's nonconservative model en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1992 en
heal.abstract The critical states of divergence instability of the two-degree-of-freedom Ziegler's model under a nonconservative follower load are reexamined with the aid of a nonlinear static and dynamic analysis. The long-term postcritical response is studied by discussing the effect of various parameters such as geometric and stiffness nonlinearities, linear viscous damping and initial geometric imperfections. To this end the stability of equilibria and limit cycles is explored with the aid of global solutions based on the original nonlinear equations of motion in order to include nonperiodic (chaotic) motion phenomena. New important results obtained by nonlinear static and dynamic analyses contradict existing findings based on classical linearized solutions. It is found that the critical load coincides with the corresponding dynamic one (associated with a divergent motion) only for models without precritical deformations. Some chaoslike phenomena of dissipative or non-dissipative autonomous systems due to competing equilibrium point attractors are also presented. © 1992. en
heal.publisher ELSEVIER SCIENCE SA LAUSANNE en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.isi ISI:A1992HL44900003 en
dc.identifier.volume 95 en
dc.identifier.issue 3 en
dc.identifier.spage 317 en
dc.identifier.epage 330 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής