dc.contributor.author |
KRAVVARITIS, D |
en |
dc.contributor.author |
PAPAGEORGIOU, NS |
en |
dc.date.accessioned |
2014-03-01T01:08:59Z |
|
dc.date.available |
2014-03-01T01:08:59Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10777 |
|
dc.subject |
Evolution Equation |
en |
dc.subject |
Optimal Control |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
BANACH-SPACE |
en |
dc.subject.other |
SYSTEMS |
en |
dc.title |
OPTIMAL-CONTROL OF A CLASS OF NONLINEAR EVOLUTION-EQUATIONS |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207729208949380 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207729208949380 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
The optimal control of a class of non-linear evolution equations with control constraints. defined in a Gelfand triple of spaces, is discussed. First we establish the existence of optimal admissible pairs. using the Cesari-Rockafellar reduction technique. Then we obtain necessary conditions for optimality for a problem with a non-smooth cost functional. Then for a terminal-cost version of our problem we obtain a bang-bang characterization of the optimal control. Finally an example of a parabolic distributed parameter system is worked out in detail. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE |
en |
dc.identifier.doi |
10.1080/00207729208949380 |
en |
dc.identifier.isi |
ISI:A1992JM44300001 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1245 |
en |
dc.identifier.epage |
1259 |
en |