HEAL DSpace

PICTORIAL INFORMATION-RETRIEVAL USING THE RANDOM NEURAL NETWORK

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author STAFYLOPATIS, A en
dc.contributor.author LIKAS, A en
dc.date.accessioned 2014-03-01T01:09:00Z
dc.date.available 2014-03-01T01:09:00Z
dc.date.issued 1992 en
dc.identifier.issn 0098-5589 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10786
dc.subject ASSOCIATIVE MEMORY en
dc.subject HEBBIAN LEARNING en
dc.subject INFORMATION RETRIEVAL en
dc.subject NEURAL COMPUTATION en
dc.subject PICTORIAL INFORMATION SYSTEMS en
dc.subject RANDOM NEURAL NETWORK en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other VISUAL LANGUAGE COMPILER en
dc.subject.other THRESHOLD FUNCTIONS en
dc.subject.other CAPACITY en
dc.subject.other SYSTEM en
dc.title PICTORIAL INFORMATION-RETRIEVAL USING THE RANDOM NEURAL NETWORK en
heal.type journalArticle en
heal.identifier.primary 10.1109/32.148477 en
heal.identifier.secondary http://dx.doi.org/10.1109/32.148477 en
heal.language English en
heal.publicationDate 1992 en
heal.abstract A technique is developed based on the use of a neural network model for performing information retrieval in a pictorial information system. The neural network provides autoassociative memory operation and allows the retrieval of stored symbolic images using erroneous or incomplete information as input. The network used is based on an adaptation of the random neural network model featuring positive and negative nodes and symmetrical behavior of positive and negative signals. The network architecture considered here has hierarchical structure and allows two level operation during learning and recall. An experimental software prototype, including an efficient graphical interface, has been implemented and tested. The performance of the system has been investigated through experiments under several schemes concerning storage and reconstruction of patterns. These schemes are either based on properties of the random network or constitute adaptations of known neural network techniques. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE TRANSACTIONS ON SOFTWARE ENGINEERING en
dc.identifier.doi 10.1109/32.148477 en
dc.identifier.isi ISI:A1992JE24400005 en
dc.identifier.volume 18 en
dc.identifier.issue 7 en
dc.identifier.spage 590 en
dc.identifier.epage 600 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής