dc.contributor.author |
Kanarachos, A |
en |
dc.contributor.author |
Provatidis, Ch |
en |
dc.date.accessioned |
2014-03-01T01:09:00Z |
|
dc.date.available |
2014-03-01T01:09:00Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10789 |
|
dc.subject |
acoustics |
en |
dc.subject |
boundary element method |
en |
dc.subject |
dynamic problems |
en |
dc.subject |
eigenvalues |
en |
dc.subject |
potential problems |
en |
dc.subject |
subregions |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.title |
Potential and wave propagation problems using the boundary element method and BEM-subregions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0955-7997(92)90052-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0955-7997(92)90052-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this paper the efficiency of the boundary element method (BEM) for the solution of potential and wave propagation problems using BEM-subregions is examined. It will be shown, that the commonly used u-q-continuity technique for the coupling of BEM-subregions, does not always improve the accuracy of the numerical solution. The reason for this behavior, as well as an alternative BEM-formulation based on cardinal (1-0) weighting functions leading to symmetric and positive definite mass- and stiffness-matrices, will be investigated. Numerical results verify the theoretical statements. © 1992. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.doi |
10.1016/0955-7997(92)90052-9 |
en |
dc.identifier.isi |
ISI:A1992JF05900002 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
117 |
en |
dc.identifier.epage |
124 |
en |