dc.contributor.author |
Afrati, F |
en |
dc.date.accessioned |
2014-03-01T01:09:06Z |
|
dc.date.available |
2014-03-01T01:09:06Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0166-218X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10839 |
|
dc.subject |
Logic Programs |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
RELATIONAL QUERIES |
en |
dc.subject.other |
DATABASES |
en |
dc.title |
The parallel complexity of single rule logic programs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0166-218X(92)90025-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0166-218X(92)90025-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
We consider logic programs without function symbols, called Datalog programs, and study their parallel complexity. We survey the tools developed for proving that there is a PRAM algorithm which computes the minimum model of a Datalog program in polylogarithmic parallel time using a polynomial number of processors (that is, for proving membership in NC). We extend certain of these tools to be applied to a wider class of programs; as they were, they were applied to chain rule programs (i.e., the relations on the right-hand side of the rule are binary and form a chain). We examine the parallel complexity of weak-chain rule programs (i.e., the relations on the right-hand side of the rule form a weak chain), and prove certain subclasses to belong to NC. Finally we prove a wide class of programs to be log space complete for P, by giving sufficient conditions for a single rule program to be P-complete. © 1992. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Discrete Applied Mathematics |
en |
dc.identifier.doi |
10.1016/0166-218X(92)90025-6 |
en |
dc.identifier.isi |
ISI:A1992KB65700002 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
107 |
en |
dc.identifier.epage |
126 |
en |