dc.contributor.author |
Papakonstantinou, G |
en |
dc.contributor.author |
Panayiotopoulos, T |
en |
dc.date.accessioned |
2014-03-01T01:09:07Z |
|
dc.date.available |
2014-03-01T01:09:07Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0921-0296 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10859 |
|
dc.subject |
certainty |
en |
dc.subject |
inexact reasoning |
en |
dc.subject |
model elimination |
en |
dc.subject |
Prolog |
en |
dc.subject |
theorem-proving |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
EXPERT SYSTEMS |
en |
dc.title |
A full theorem-prover under uncertainty |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01257816 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01257816 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
Prolog embodies an ordered input resolution inference mechanism, with a powerful unification procedure. However, Prolog is not a full theorem-prover, and does not contain an inexact reasoning mechanism. In this paper, it is shown how these capabilities can be combined in a Prolog environment. A Prolog meta-interpreter is used in an elegant and simple way for this purpose. The inexact reasoning mechanism is presented through the certainty factor model, but it is also discussed how other inexact reasoning models may be also implemented. © 1993 Kluwer Academic Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Journal of Intelligent & Robotic Systems |
en |
dc.identifier.doi |
10.1007/BF01257816 |
en |
dc.identifier.isi |
ISI:A1993KQ70800002 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
139 |
en |
dc.identifier.epage |
149 |
en |