dc.contributor.author |
Glekas, JP |
en |
dc.contributor.author |
Bergeles, GC |
en |
dc.date.accessioned |
2014-03-01T01:09:12Z |
|
dc.date.available |
2014-03-01T01:09:12Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10865 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027788673&partnerID=40&md5=9aaba51c4e7b9130619d6df7730a2987 |
en |
dc.subject |
coordinate transformation |
en |
dc.subject |
finite volume method |
en |
dc.subject |
nonorthogonal grid |
en |
dc.subject |
turbulence |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Computer code efficiency |
en |
dc.subject.other |
coordinate transformation |
en |
dc.subject.other |
Flow reversal |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
Nonorthogonal coordinate system |
en |
dc.subject.other |
Time averaged equations |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Geophysical Flows |
en |
dc.subject.other |
Modelling-Mathematical |
en |
dc.subject.other |
Recirculating Flows |
en |
dc.subject.other |
Wind |
en |
dc.subject.other |
coordinate transformation |
en |
dc.subject.other |
finite volume method |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
nonorthogonal grid |
en |
dc.subject.other |
turbulence |
en |
dc.title |
A numerical method for recirculating flows on generalized coordinates: application in environmental flows |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
This paper presents a numerical method for the solution of the time-averaged Navier-Stokes equations, written in their contravariant strong conservation form, in a generalized nonorthogonal coordinate system. A coordinate transformation is used, and the solution domain is transformed into a unit rectangle, where the transformed governing equations are solved via a finite volume technique. Various tests prove the efficiency and flexibility of the developed computer code; then the method is applied to two practical applications concerning the calculation of the flow and concentration fields over two two-dimensional (2-D) hills, with and without flow reversal. © 1993. |
en |
heal.publisher |
BUTTERWORTH-HEINEMANN |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.isi |
ISI:A1993LV31100001 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
506 |
en |
dc.identifier.epage |
521 |
en |