dc.contributor.author |
Bonataki, E |
en |
dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:09:18Z |
|
dc.date.available |
2014-03-01T01:09:18Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0098-2202 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10882 |
|
dc.subject |
Three Dimensional |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Intake systems |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Morphology |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Pressure |
en |
dc.subject.other |
Turbomachine blades |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
Dirichlet type boundary conditions |
en |
dc.subject.other |
Elliptic type partial differential equations |
en |
dc.subject.other |
Flow angle fields |
en |
dc.subject.other |
Inverse inviscid method |
en |
dc.subject.other |
Irrotational flows |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Periodic type boundary conditions |
en |
dc.subject.other |
Turbomachine blade shapes |
en |
dc.subject.other |
Cascades (fluid mechanics) |
en |
dc.subject.other |
Blades |
en |
dc.subject.other |
Cascades |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Turbomachinery |
en |
dc.title |
Inverse inviscid method for the design of quasi-three-dimensional turbomachinery cascades |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.2910093 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.2910093 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
The calculation of the blade shape, when the desired velocity distribution is imposed, has been the object of numerous investigations in the past. The object of this paper is to present a new method suitable for the design of turbomachinery stator and rotor blade sections, lying on an arbitrary axisymmetric stream-surface with varying streamtube width. The flow is considered irrotational in the absolute frame of reference and compressible. The given data are the streamtube geometry, the number of blades, the inlet flow conditions and the suction and pressure side velocity distributions as functions of the normalized arc-length. The output of the computation is the blade shape that satisfies the above data. The method solves an elliptic type partial differential equation for the velocity modulus with Dirichlet and periodic type boundary conditions on the (potential function, stream function)-plane (PHI, PSI). The flow angle field is subsequently calculated solving an ordinary differential equation along the iso-PHI or iso-PSI lines. The blade coordinates are, finally, computed by numerical integration. A set of closure conditions has been developed and discussed in the paper. The method is validated on several test cases and a discussion is held concerning its application and limitations. |
en |
heal.publisher |
ASME-AMER SOC MECHANICAL ENG |
en |
heal.journalName |
Journal of Fluids Engineering, Transactions of the ASME |
en |
dc.identifier.doi |
10.1115/1.2910093 |
en |
dc.identifier.isi |
ISI:A1993KV01700019 |
en |
dc.identifier.volume |
115 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
121 |
en |
dc.identifier.epage |
127 |
en |