HEAL DSpace

Application of the Green and the Rayleigh-Green reciprocal identities to path-independent integrals in two- and three-dimensional elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ioakimidis, NI en
dc.contributor.author Anastasselou, EG en
dc.date.accessioned 2014-03-01T01:09:18Z
dc.date.available 2014-03-01T01:09:18Z
dc.date.issued 1993 en
dc.identifier.issn 00015970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10886
dc.subject General Methods en
dc.subject Harmonic Function en
dc.subject Stress Intensity Factor en
dc.subject Three Dimensional en
dc.title Application of the Green and the Rayleigh-Green reciprocal identities to path-independent integrals in two- and three-dimensional elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01174296 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01174296 en
heal.publicationDate 1993 en
heal.abstract An elementary but quite general method for the construction of path-independent integrals in plane and three-dimensional elasticity is suggested. This approach consists simply in using the classical Green formula in its reciprocal form for harmonic functions and, further, the more general Rayleigh-Green formula also in its reciprocal form, but for biharmonic functions. A large number of harmonic and biharmonic functions appears in a natural way in the theory of elasticity. Therefore, the construction of path-independent integrals (or, probably better, surface-independent integrals in the three-dimensional case) becomes really a trivial task. An application to the determination of stress intensity factors at crack tips is considered in detail and only the sum of the principal stress components is used in the path-independent integral. Further applications of the method are easily possible. © 1993 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/BF01174296 en
dc.identifier.volume 98 en
dc.identifier.issue 1-4 en
dc.identifier.spage 99 en
dc.identifier.epage 106 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής