dc.contributor.author | Ioakimidis, NI | en |
dc.contributor.author | Anastasselou, EG | en |
dc.date.accessioned | 2014-03-01T01:09:18Z | |
dc.date.available | 2014-03-01T01:09:18Z | |
dc.date.issued | 1993 | en |
dc.identifier.issn | 00015970 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/10886 | |
dc.subject | General Methods | en |
dc.subject | Harmonic Function | en |
dc.subject | Stress Intensity Factor | en |
dc.subject | Three Dimensional | en |
dc.title | Application of the Green and the Rayleigh-Green reciprocal identities to path-independent integrals in two- and three-dimensional elasticity | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/BF01174296 | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/BF01174296 | en |
heal.publicationDate | 1993 | en |
heal.abstract | An elementary but quite general method for the construction of path-independent integrals in plane and three-dimensional elasticity is suggested. This approach consists simply in using the classical Green formula in its reciprocal form for harmonic functions and, further, the more general Rayleigh-Green formula also in its reciprocal form, but for biharmonic functions. A large number of harmonic and biharmonic functions appears in a natural way in the theory of elasticity. Therefore, the construction of path-independent integrals (or, probably better, surface-independent integrals in the three-dimensional case) becomes really a trivial task. An application to the determination of stress intensity factors at crack tips is considered in detail and only the sum of the principal stress components is used in the path-independent integral. Further applications of the method are easily possible. © 1993 Springer-Verlag. | en |
heal.publisher | Springer-Verlag | en |
heal.journalName | Acta Mechanica | en |
dc.identifier.doi | 10.1007/BF01174296 | en |
dc.identifier.volume | 98 | en |
dc.identifier.issue | 1-4 | en |
dc.identifier.spage | 99 | en |
dc.identifier.epage | 106 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |