dc.contributor.author |
Chryssoverghi, I |
en |
dc.contributor.author |
Bacopoulos, A |
en |
dc.date.accessioned |
2014-03-01T01:09:18Z |
|
dc.date.available |
2014-03-01T01:09:18Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0022-3239 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10891 |
|
dc.subject |
approximation |
en |
dc.subject |
discretization |
en |
dc.subject |
distributed systems |
en |
dc.subject |
nonlinear parabolic systems |
en |
dc.subject |
Optimal control |
en |
dc.subject |
relaxed controls |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Piecewise linear techniques |
en |
dc.subject.other |
Relaxation processes |
en |
dc.subject.other |
Discretization |
en |
dc.subject.other |
Nonlinear parabolic partial differential equations |
en |
dc.subject.other |
Relaxed controls |
en |
dc.subject.other |
Optimal control systems |
en |
dc.title |
Approximation of relaxed nonlinear parabolic optimal control problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00940778 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00940778 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
We consider a relaxed optimal control problem for systems defined by nonlinear parabolic partial differential equations with distributed control. The problem is completely discretized by using a finite-element approximation scheme with piecewise linear states and piecewise constant controls. Existence of optimal controls and necessary conditions for optimality are derived for both the continuous and the discrete problem. We then prove that accumulation points of sequences of discrete optimal [resp. extremal] controls are optimal [resp. extremal] for the continuous problem. © 1993 Plenum Publishing Corporation. |
en |
heal.publisher |
Kluwer Academic Publishers-Plenum Publishers |
en |
heal.journalName |
Journal of Optimization Theory and Applications |
en |
dc.identifier.doi |
10.1007/BF00940778 |
en |
dc.identifier.isi |
ISI:A1993LH84400002 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
31 |
en |
dc.identifier.epage |
50 |
en |