HEAL DSpace

Effect of the structure of porous anodic Al2O3 films on the mechanism of their hydration and pore closure during hydrothermal treatment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patermarakis, G en
dc.contributor.author Papandreadis, N en
dc.date.accessioned 2014-03-01T01:09:23Z
dc.date.available 2014-03-01T01:09:23Z
dc.date.issued 1993 en
dc.identifier.issn 0013-4686 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10939
dc.subject aluminium en
dc.subject anodizing en
dc.subject hydration mechanism. en
dc.subject oxide en
dc.subject porous en
dc.subject.classification Electrochemistry en
dc.subject.other Aluminum corrosion en
dc.subject.other Anodic oxidation en
dc.subject.other Corrosion resistance en
dc.subject.other Films en
dc.subject.other Hydration en
dc.subject.other Porous materials en
dc.subject.other Alumina films hydration en
dc.subject.other Anodic alumina films en
dc.subject.other Hydrothermal treatment effects en
dc.subject.other Pore closure en
dc.subject.other Porous alumina films en
dc.subject.other Alumina en
dc.title Effect of the structure of porous anodic Al2O3 films on the mechanism of their hydration and pore closure during hydrothermal treatment en
heal.type journalArticle en
heal.identifier.primary 10.1016/0013-4686(93)80078-E en
heal.identifier.secondary http://dx.doi.org/10.1016/0013-4686(93)80078-E en
heal.language English en
heal.publicationDate 1993 en
heal.abstract Porous anodic Al2O3 films (prepared galvanostatically in a vigorously stirred bath with 15% w/v H2SO4 at bath temperatures of 20, 25 and 30-degrees-C, current densities of 5, 15 and 35 mA cm-2 and various anodization times with thicknesses generally varying between 1.5 mum and the maximum limiting values achieved) were hydrated on prolonged treatment in H2O at 100-degrees-C for 4.5 h. The amount of H2O retained and its ratio to the pore void volume of the dry films were determined. The results showed that pore mouth plugs completely blocking pore necks are indeed formed, significantly retarding the hydration process taking place behind them. For the average pore, the plug is formed up to a pore length which is usually shorter than, or close to the half of the maximum limiting pore length achieved. The formation of pore mouth plugs appeared to be the consequence of the spinning top shape of pores as well as of other structural features such as the size distribution of microcrystallites around the pore walls. Moreover, it appeared that the strong retardation of the hydration process behind the plugs cannot be ascribed exclusively to plug formation per se but rather to some other phenomena occurring in the space just behind plugs; the most probable appears to be the existence or the formation of a gas phase, as long as the hydration of the pore wall oxide is in advance, occupying a part of the unfilled pore volume. For pores longer than the above, ''open plugs'' around pore mouths are formed; the factors responsible for the retardation of the hydration process around pore walls are eliminated and the mechanism of pore closure becomes similar to that of conical pores. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Electrochimica Acta en
dc.identifier.doi 10.1016/0013-4686(93)80078-E en
dc.identifier.isi ISI:A1993LJ41800015 en
dc.identifier.volume 38 en
dc.identifier.issue 10 en
dc.identifier.spage 1413 en
dc.identifier.epage 1420 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής