dc.contributor.author |
Lacey, AA |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:09:25Z |
|
dc.date.available |
2014-03-01T01:09:25Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0022-0396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10969 |
|
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SEMILINEAR HEAT-EQUATION |
en |
dc.subject.other |
COMPLETE BLOW-UP |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Global, Unbounded Solutions to a Parabolic Equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jdeq.1993.1006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jdeq.1993.1006 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
Nonlinear parabolic equations of the form ut = Δu + f{hook}(u) and which are capable of exhibiting blow-up are considered. We find that if there is a unique steady state then it is possible to choose initial conditions so that the solution is unbouded but exists, at least in a weak sense, for all time. For more restricted problems, e.g., f{hook}(u) = eu in three dimensions, we find some particular solutions to the equation which blow up at a finite time but continue to exist afterwards. © 1993 Academic Press. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS |
en |
heal.journalName |
Journal of Differential Equations |
en |
dc.identifier.doi |
10.1006/jdeq.1993.1006 |
en |
dc.identifier.isi |
ISI:A1993KJ78400006 |
en |
dc.identifier.volume |
101 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
80 |
en |
dc.identifier.epage |
102 |
en |