dc.contributor.author |
TSITOURAS, C |
en |
dc.contributor.author |
PAPAGEORGIOU, G |
en |
dc.date.accessioned |
2014-03-01T01:09:26Z |
|
dc.date.available |
2014-03-01T01:09:26Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0020-7160 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10978 |
|
dc.subject |
ORDINARY DIFFERENTIAL EQUATIONS |
en |
dc.subject |
RUNGE-KUTTA-NYSTROM METHODS |
en |
dc.subject |
INTERPOLANTS |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
FORMULAS |
en |
dc.subject.other |
TRIPLES |
en |
dc.title |
INTERPOLATING RUNGE-KUTTA-NYSTROM METHODS OF HIGH-ORDER |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207169308804178 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207169308804178 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
A Runge-Kutta-Nystrom (RKN) formula becomes inefficient when the step size must be reduced often to produce answers at specified points. The last years an effort has been started to providing Runge-Kutta Nystrom methods with an interpolation capability. Then approximations can be produced on intermediate points of a successful step inexpensively. New high order Hermite type interpolants for (RKN) methods are presented. The interpolants which approximate the solution is of O(h(9)) and C-2 while the interpolants which approximate the corresponding derivative is of O(h(8)) and C-1. These interpolants have been constructed in two ways, using values from one and two steps respectively. |
en |
heal.publisher |
GORDON BREACH SCI PUBL LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS |
en |
dc.identifier.doi |
10.1080/00207169308804178 |
en |
dc.identifier.isi |
ISI:A1993MR59700009 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
209 |
en |
dc.identifier.epage |
217 |
en |