HEAL DSpace

MEASURING THE FRACTAL DIMENSION OF SIGNALS - MORPHOLOGICAL COVERS AND ITERATIVE OPTIMIZATION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author MARAGOS, P en
dc.contributor.author SUN, FK en
dc.date.accessioned 2014-03-01T01:09:27Z
dc.date.available 2014-03-01T01:09:27Z
dc.date.issued 1993 en
dc.identifier.issn 1053-587X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10993
dc.subject Computational Complexity en
dc.subject Discrete Time en
dc.subject Fractal Dimension en
dc.subject fractional brownian motion en
dc.subject General Methods en
dc.subject Geometric Structure en
dc.subject Morphological Operation en
dc.subject Multiple Scales en
dc.subject Optimal Method en
dc.subject Time Series Data en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other TEXTURE en
dc.title MEASURING THE FRACTAL DIMENSION OF SIGNALS - MORPHOLOGICAL COVERS AND ITERATIVE OPTIMIZATION en
heal.type journalArticle en
heal.identifier.primary 10.1109/TSP.1993.193131 en
heal.identifier.secondary http://dx.doi.org/10.1109/TSP.1993.193131 en
heal.language English en
heal.publicationDate 1993 en
heal.abstract Fractals can model many classes of time-series data. The fractal dimension is an important characteristic of fractals that contains information about their geometrical structure at multiple scales. The covering methods are a class of efficient approaches to measure the fractal dimension of an arbitrary fractal signal by creating multiscale covers around the signal's graph. In this paper we develop a general method that uses multiscale morphological operations with varying structuring elements to unify and extend the theory and digital implementations of covering methods. It is theoretically established that, for the fractal dimension computation, covering one-dimensional signals with planar sets is equivalent to morphologically transforming the signal by one-dimensional functions, which reduces the computational complexity from quadratic in the signal's length to linear. Then a morphological covering algorithm is developed and applied to discrete-time signals synthesized from Weierstrass functions, fractal interpolation functions, and fractional Brownian motion. Further, for deterministic parametric fractals depending on a single parameter related to their dimension, we develop an optimization method that starts from an initial estimate and iteratively converges to the true fractal dimension by searching in the parameter space and minimizing a distance between the original signal and all such signals from the same class. Experimental results are also provided to demonstrate the good performance of the developed methods. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE TRANSACTIONS ON SIGNAL PROCESSING en
dc.identifier.doi 10.1109/TSP.1993.193131 en
dc.identifier.isi ISI:A1993KG14800010 en
dc.identifier.volume 41 en
dc.identifier.issue 1 en
dc.identifier.spage 108 en
dc.identifier.epage 121 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής