dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:09:29Z |
|
dc.date.available |
2014-03-01T01:09:29Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
00315303 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11024 |
|
dc.subject |
Hereditary system |
en |
dc.subject |
integrodifferential inclusion |
en |
dc.subject |
Mathematics subject classification numbers, 1991: Primary 49A20 |
en |
dc.subject |
maximal monotone operator |
en |
dc.subject |
R-convergence |
en |
dc.subject |
relaxability performance stability |
en |
dc.subject |
relaxed system |
en |
dc.title |
Optimal control, sensitivity analysis and relaxation of maximal monotone integrodifferential inclusions in RN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01875991 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01875991 |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
In this paper we examine optimal control problems governed by maximal monotone integrodifferential inclusions in RN. First we establish the existence of an optimal control. Then we show that the value of the problem depends continuously on a parameter appearing in all the data. Then we introduce the relaxed system, we show that under very general hypotheses it has a solution and that its value equals that of the original problem. Subsequently we show that relaxability and performance stability are equivalent concepts. Finally we specialize our results to the class of controlled differential variational inequalities. © 1993 Akadémiai Kiadó, Budapest. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Periodica Mathematica Hungarica |
en |
dc.identifier.doi |
10.1007/BF01875991 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
155 |
en |
dc.identifier.epage |
175 |
en |