HEAL DSpace

Optimal control, sensitivity analysis and relaxation of maximal monotone integrodifferential inclusions in RN

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:09:29Z
dc.date.available 2014-03-01T01:09:29Z
dc.date.issued 1993 en
dc.identifier.issn 00315303 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11024
dc.subject Hereditary system en
dc.subject integrodifferential inclusion en
dc.subject Mathematics subject classification numbers, 1991: Primary 49A20 en
dc.subject maximal monotone operator en
dc.subject R-convergence en
dc.subject relaxability performance stability en
dc.subject relaxed system en
dc.title Optimal control, sensitivity analysis and relaxation of maximal monotone integrodifferential inclusions in RN en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01875991 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01875991 en
heal.publicationDate 1993 en
heal.abstract In this paper we examine optimal control problems governed by maximal monotone integrodifferential inclusions in RN. First we establish the existence of an optimal control. Then we show that the value of the problem depends continuously on a parameter appearing in all the data. Then we introduce the relaxed system, we show that under very general hypotheses it has a solution and that its value equals that of the original problem. Subsequently we show that relaxability and performance stability are equivalent concepts. Finally we specialize our results to the class of controlled differential variational inequalities. © 1993 Akadémiai Kiadó, Budapest. en
heal.publisher Kluwer Academic Publishers en
heal.journalName Periodica Mathematica Hungarica en
dc.identifier.doi 10.1007/BF01875991 en
dc.identifier.volume 27 en
dc.identifier.issue 3 en
dc.identifier.spage 155 en
dc.identifier.epage 175 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record