HEAL DSpace

PERFORMANCE CONSIDERATIONS ON A RANDOM GRAPH MODEL FOR PARALLEL-PROCESSING

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author AFRATI, F en
dc.contributor.author STAFYLOPATIS, A en
dc.date.accessioned 2014-03-01T01:09:30Z
dc.date.available 2014-03-01T01:09:30Z
dc.date.issued 1993 en
dc.identifier.issn 0988-3754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11032
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/journals/ita/ita27.html#AfratiS93 en
dc.subject Parallel Processing en
dc.subject Random Graph Model en
dc.subject.classification Computer Science, Information Systems en
dc.title PERFORMANCE CONSIDERATIONS ON A RANDOM GRAPH MODEL FOR PARALLEL-PROCESSING en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1993 en
heal.abstract Consider a random directed acyclic graph (dag) with nodes 1, 2, ..., n, and an edge from node i to node j (only if i >j) with fixed probability p. Such a graph can be thought of as the task graph associated with a job and thus it serves as a parallel processing model; the vertices correspond to tasks and the edges correspond to precedence constraints between tasks. In this case, the length of the graph corresponds to the parallel processing time of the job (an infinite number of available processors is assumed) and the width of the graph corresponds to the parallelism of the job. We estimate here the average length of the random dag (that is, the average processing time of the job) as a function of the probability p and the number of tasks n hy establishing tight lower and upper bounds. The lower (resp. upper) bound is determined as being equal to the average length of a random dag considerably simpler to manipulate than the original one. Furthermore, the asymptotic behaviour of the average length is studied and the results obtained improve previously published results. Finally, asymptotic results are obtained concerning the average width of the task graph; it is shown that the average width tends to 1/p as n --> infinity. en
heal.publisher DUNOD en
heal.journalName RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS en
dc.identifier.isi ISI:A1993LQ32600007 en
dc.identifier.volume 27 en
dc.identifier.issue 4 en
dc.identifier.spage 367 en
dc.identifier.epage 388 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής