dc.contributor.author |
Hizanidis, Kyriakos |
en |
dc.contributor.author |
Frantzeskakis Demetrios, J |
en |
dc.date.accessioned |
2014-03-01T01:09:31Z |
|
dc.date.available |
2014-03-01T01:09:31Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0018-9197 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11055 |
|
dc.subject |
Evolution Equation |
en |
dc.subject |
Indexation |
en |
dc.subject |
Perturbation Analysis |
en |
dc.subject |
Perturbation Method |
en |
dc.subject |
Soliton Solution |
en |
dc.subject |
Single Mode |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Electromagnetic dispersion |
en |
dc.subject.other |
Laser pulses |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Nonlinear optics |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Refractive index |
en |
dc.subject.other |
Bright to dark soliton transitions |
en |
dc.subject.other |
Evolution equations |
en |
dc.subject.other |
Lossless nonlinear dielectric slab |
en |
dc.subject.other |
Material dispersion |
en |
dc.subject.other |
Nonlinear Schrodinger equation |
en |
dc.subject.other |
Reductive perturbation method (RPM) |
en |
dc.subject.other |
Dielectric waveguides |
en |
dc.title |
Reductive perturbation analysis of short pulse propagation in a nonlinear dielectric slab: The role of material dispersion in bright-to-dark soliton transitions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/3.199270 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/3.199270 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
The pulse propagation in a lossless nonlinear dielectric slab of parabolic index profile with material dispersion is analyzed with the reductive perturbation method. The cases of temporally and spatially short optical pulses, with respect to the respective effectiveness of the nonlinearity, are both considered. The evolution equations are given explicitly for the practical single mode case. Envelope solitons are obtained through the nonlinear Schroedinger equation which results in the third order of the perturbation scheme. The lower-order soliton solutions are derived analytically along with the conditions for sustaining bright or dark solitons (the latter cannot be excited if resonance effects in the material dispersion are absent). Numerical results are given for typical values of the parameters involved. The required optical carrier frequencies for bright-to-dark soliton transitions are also found. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Journal of Quantum Electronics |
en |
dc.identifier.doi |
10.1109/3.199270 |
en |
dc.identifier.isi |
ISI:A1993KG45400032 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
286 |
en |
dc.identifier.epage |
295 |
en |