HEAL DSpace

Rotational compressible inverse design method for two-dimensional, internal flow configurations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dedoussis, V en
dc.contributor.author Chaviaropoulos, P en
dc.contributor.author Papailiou, KD en
dc.date.accessioned 2014-03-01T01:09:31Z
dc.date.available 2014-03-01T01:09:31Z
dc.date.issued 1993 en
dc.identifier.issn 0001-1452 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11057
dc.subject Design Method en
dc.subject.classification Engineering, Aerospace en
dc.subject.other Integration en
dc.subject.other Clebsch formulation en
dc.subject.other Frenet equations en
dc.subject.other Potential function/stream function formulation en
dc.subject.other Rotational compressible inverse design method en
dc.subject.other Thermal drift function en
dc.subject.other Compressible flow en
dc.subject.other Ducts, Nozzles en
dc.subject.other Internal Flow en
dc.subject.other Two-Phase Flow en
dc.title Rotational compressible inverse design method for two-dimensional, internal flow configurations en
heal.type journalArticle en
heal.identifier.primary 10.2514/3.11364 en
heal.identifier.secondary http://dx.doi.org/10.2514/3.11364 en
heal.language English en
heal.publicationDate 1993 en
heal.abstract The development of a rotational inviscid compressible inverse design method for two-dimensional internal flow configurations is described. Rotationality is due to incoming entropy gradient whereas total enthalpy is considered to be constant throughout the flowfield. The method is based on the potential function/stream function formulation. The Ciebsch formulation is adopted to decompose the velocity vector into a potential and a rotational part. The physical space on which the boundaries of the flowfield are sought is mapped onto the (phi, psi) space via a body-fitted coordinate transformation. A novel procedure based on differential geometry arguments is employed to derive the governing equation for the velocity. The velocity equation solved in conjunction with a transport equation for a thermal drift function provide the flowfield without any geometry feedback. An auxiliary orthogonal computational grid adapted to the solution is employed. Geometry is determined by integrating Frenet equations of the grid lines. Inverse calculation results are compared with results of direct ''reproduction'' calculations. en
heal.publisher AMER INST AERONAUT ASTRONAUT en
heal.journalName AIAA journal en
dc.identifier.doi 10.2514/3.11364 en
dc.identifier.isi ISI:A1993KU60600020 en
dc.identifier.volume 31 en
dc.identifier.issue 3 en
dc.identifier.spage 551 en
dc.identifier.epage 558 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής