dc.contributor.author |
Afrati, Foto |
en |
dc.contributor.author |
Papadimitriou Christos, H |
en |
dc.date.accessioned |
2014-03-01T01:09:35Z |
|
dc.date.available |
2014-03-01T01:09:35Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0004-5411 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11092 |
|
dc.subject |
ALA |
en |
dc.subject |
LNA |
en |
dc.subject |
THN |
en |
dc.subject |
ALGORITHMS |
en |
dc.subject |
LANGUAGES |
en |
dc.subject |
THEORY |
en |
dc.subject |
AUTOMATON |
en |
dc.subject |
NC |
en |
dc.subject |
P-COMPLETENESS |
en |
dc.subject |
POLYNOMIAL FRINGE |
en |
dc.subject |
POLYNOMIAL STOCK |
en |
dc.subject |
PUSHDOWN |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Automata theory |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Computational linguistics |
en |
dc.subject.other |
Computer programming languages |
en |
dc.subject.other |
Logic programming |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Recursive functions |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Automaton |
en |
dc.subject.other |
P completeness |
en |
dc.subject.other |
Parallel complexity |
en |
dc.subject.other |
Polynomial fringe |
en |
dc.subject.other |
Polynomial stock |
en |
dc.subject.other |
Pushdown |
en |
dc.subject.other |
Computer software |
en |
dc.title |
Parallel complexity of simple logic programs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1145/153724.153752 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/153724.153752 |
en |
heal.language |
English |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
We consider logic programs with a single recursive rule, whose right-hand side consists of binary relations forming a chain. We give a complete characterization of all programs of this form that are computable in NC (assuming that P not-equal NC). Our proof uses ideas from automata and language theory, and the combinatories of strings. |
en |
heal.publisher |
ASSOC COMPUTING MACHINERY |
en |
heal.journalName |
Journal of the ACM |
en |
dc.identifier.doi |
10.1145/153724.153752 |
en |
dc.identifier.isi |
ISI:A1993MA53100004 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
891 |
en |
dc.identifier.epage |
916 |
en |