dc.contributor.author |
Kakatsios, XK |
en |
dc.contributor.author |
Krikkis, RN |
en |
dc.date.accessioned |
2014-03-01T01:09:39Z |
|
dc.date.available |
2014-03-01T01:09:39Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0965-9978 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11124 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-50749132800&partnerID=40&md5=9778e93eea9c7611a2de0a318eec5336 |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.title |
A FORTRAN package for the calculation of the three isentropic exponents - based on the Redlich-Kwong equation of state |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
It has been shown that the isentropic change of real gases can be described with very good accuracy by the ideal gas isentropic change equations, provided that the isentropic exponent k = c(p)/c(upsilon) contained in these equations is replaced by the three new isentropic exponents k(Tupsilon), k(Tp), k(pupsilon) in the way shown below: pupsilon(kpupsilon) = const Tupsilon(kTupsilon - 1) = const p(1 - kTp)T(kTp) = const. The values of the three isentropic exponents can be easily calculated if the thermal (p = p(upsilon, T)) and the caloric (c(p) = c(p)(upsilon, T), c(upsilon) = c(upsilon)(upsilon, T)) equations of state for the real gas considered are known. The present work provides a general program for approximating the values of the above exponents for real gases for which no detailed thermodynamic data are available and it is based on the Redlich-Kwong equation of state. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Advances in Engineering Software |
en |
dc.identifier.isi |
ISI:A1994QD69400008 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
59 |
en |
dc.identifier.epage |
61 |
en |