dc.contributor.author |
Mastorakis, NE |
en |
dc.contributor.author |
Theodorou, NJ |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:09:39Z |
|
dc.date.available |
2014-03-01T01:09:39Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0923-6082 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11126 |
|
dc.subject |
factorization |
en |
dc.subject |
Multidimensional systems |
en |
dc.subject |
multivariable (multidimensional) polynomials |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Automation |
en |
dc.subject.other |
Codes (symbols) |
en |
dc.subject.other |
Distributed parameter control systems |
en |
dc.subject.other |
Multivariable systems |
en |
dc.subject.other |
Stability criteria |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Transfer functions |
en |
dc.subject.other |
Computer code |
en |
dc.subject.other |
Factorization |
en |
dc.subject.other |
Multidimensional systems |
en |
dc.subject.other |
Multivariable polynomials |
en |
dc.subject.other |
Polynomials |
en |
dc.title |
A general factorization method for multivariable polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00986976 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00986976 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
The problem of factorizing a multivariable or multidimensional (m-D) polynomial f (z1, z2, ..., zm), with real or complex coefficients and independent variables, into a number of m-D polynomial factors that may involve any independent variable or combination of them is considered. The only restriction imposed is that all factors should be linear in one and the same variable (say z1). This type of factorization is very near to the most general type: {Mathematical expression} and appears to be the most general type available. The method is first briefly sketched for the convenience of the reader, and then is presented in detailed form through a number of theorems. These theorems provide a clear algorithmic way for the factorization, which may be automated via a suitable computer code. The factorization of m-D polynomials simplifies the stability analysis and the realization of m-D systems, as well as the solution of distributed parameters systems. © 1994 Kluwer Academic Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Multidimensional Systems and Signal Processing |
en |
dc.identifier.doi |
10.1007/BF00986976 |
en |
dc.identifier.isi |
ISI:A1994NE19100003 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
178 |
en |