HEAL DSpace

A qualitative analysis for the local and global dynamic buckling and stability of autonomous discrete systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:09:40Z
dc.date.available 2014-03-01T01:09:40Z
dc.date.issued 1994 en
dc.identifier.issn 0033-5614 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11138
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other Buckling en
dc.subject.other Convergence of numerical methods en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Differential equations en
dc.subject.other Dynamic loads en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Estimation en
dc.subject.other Geometry en
dc.subject.other Numerical analysis en
dc.subject.other Structural analysis en
dc.subject.other System stability en
dc.subject.other Topology en
dc.subject.other Discrete dissipative systems en
dc.subject.other Global dynamic buckling en
dc.subject.other Jacobian eigenvalues en
dc.subject.other Nonlinear dynamical gradient system en
dc.subject.other Nonlinear dynamics en
dc.subject.other Qualitative analysis en
dc.subject.other Chaos theory en
dc.title A qualitative analysis for the local and global dynamic buckling and stability of autonomous discrete systems en
heal.type journalArticle en
heal.identifier.primary 10.1093/qjmam/47.2.269 en
heal.identifier.secondary http://dx.doi.org/10.1093/qjmam/47.2.269 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract A general analytic approach is presented for the local and global dynamic buckling and stability of discrete dissipative systems described by the most general form of autonomous ordnary differential equations. Attention is focused on nonlinear dynamical gradient systems which under static loading exhibit all types of simple branching points emanating from a trivial fundamental equilibrium path. The relationship between the static stability (in the precritical, critical and postcritical stage) and the corresponding dynamic stability associated with the Jacobian eigenvalues is thoroughly discussed. Conditions are established for the boundedness of solutions based on the basins of attraction of stable equilibria as well as for dynamic buckling related to a certain saddle with specific potential topology. 'Exact' and lower-upper-bound estimates of dynamic-buckling loads based on a qualitative and geometrical analysis, as well as discrepancies between global and local dynamic analyses for systems exhibiting a postcritical limit-point instability, are also reported. © 1994 Oxford University Press. en
heal.publisher OXFORD UNIV PRESS UNITED KINGDOM en
heal.journalName Quarterly Journal of Mechanics and Applied Mathematics en
dc.identifier.doi 10.1093/qjmam/47.2.269 en
dc.identifier.isi ISI:A1994NQ89400006 en
dc.identifier.volume 47 en
dc.identifier.issue 2 en
dc.identifier.spage 269 en
dc.identifier.epage 295 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής