dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:09:40Z |
|
dc.date.available |
2014-03-01T01:09:40Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0033-5614 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11138 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Discrete dissipative systems |
en |
dc.subject.other |
Global dynamic buckling |
en |
dc.subject.other |
Jacobian eigenvalues |
en |
dc.subject.other |
Nonlinear dynamical gradient system |
en |
dc.subject.other |
Nonlinear dynamics |
en |
dc.subject.other |
Qualitative analysis |
en |
dc.subject.other |
Chaos theory |
en |
dc.title |
A qualitative analysis for the local and global dynamic buckling and stability of autonomous discrete systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/qjmam/47.2.269 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/qjmam/47.2.269 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A general analytic approach is presented for the local and global dynamic buckling and stability of discrete dissipative systems described by the most general form of autonomous ordnary differential equations. Attention is focused on nonlinear dynamical gradient systems which under static loading exhibit all types of simple branching points emanating from a trivial fundamental equilibrium path. The relationship between the static stability (in the precritical, critical and postcritical stage) and the corresponding dynamic stability associated with the Jacobian eigenvalues is thoroughly discussed. Conditions are established for the boundedness of solutions based on the basins of attraction of stable equilibria as well as for dynamic buckling related to a certain saddle with specific potential topology. 'Exact' and lower-upper-bound estimates of dynamic-buckling loads based on a qualitative and geometrical analysis, as well as discrepancies between global and local dynamic analyses for systems exhibiting a postcritical limit-point instability, are also reported. © 1994 Oxford University Press. |
en |
heal.publisher |
OXFORD UNIV PRESS UNITED KINGDOM |
en |
heal.journalName |
Quarterly Journal of Mechanics and Applied Mathematics |
en |
dc.identifier.doi |
10.1093/qjmam/47.2.269 |
en |
dc.identifier.isi |
ISI:A1994NQ89400006 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
269 |
en |
dc.identifier.epage |
295 |
en |