dc.contributor.author |
Sukissian, L |
en |
dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Boutalis, Y |
en |
dc.date.accessioned |
2014-03-01T01:09:41Z |
|
dc.date.available |
2014-03-01T01:09:41Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0165-1684 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11145 |
|
dc.subject |
Classification |
en |
dc.subject |
Itakura distance |
en |
dc.subject |
Linear prediction |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Segmentation |
en |
dc.subject |
Texture |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Adaptive systems |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Distance measurement |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Recursive functions |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Textures |
en |
dc.subject.other |
Adaptive classification |
en |
dc.subject.other |
Autoregressive texture model |
en |
dc.subject.other |
Fast multichannel algorithm |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Linear prediction |
en |
dc.subject.other |
Statistical distance |
en |
dc.subject.other |
Textured image |
en |
dc.subject.other |
Image processing |
en |
dc.title |
Adaptive classification of textured images using linear prediction and neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0165-1684(94)90209-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0165-1684(94)90209-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A new technique for classifying and segmenting textured images is presented in this paper. This technique uses a fast multichannel algorithm for recursive estimation of autoregressive (AR) texture model parameters, along with a powerful statistical distance measure for adaptive selection of a small representative set of AR texture models. Specific properties of the estimation part of the method are exploited, which severly reduce the computational complexity of the distance measure, while robustness of classification with respect to additive noise is achieved using a higher-order version of the estimation part of the algorithm. Based on the small size of the selected set of AR texture models, appropriately designed and recursively constructed neural network architectures are included in the proposed scheme for adaptive classification and segmentation of textured images. © 1994. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Signal Processing |
en |
dc.identifier.doi |
10.1016/0165-1684(94)90209-7 |
en |
dc.identifier.isi |
ISI:A1994NE15200007 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
209 |
en |
dc.identifier.epage |
232 |
en |