HEAL DSpace

Adaptive classification of textured images using linear prediction and neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sukissian, L en
dc.contributor.author Kollias, S en
dc.contributor.author Boutalis, Y en
dc.date.accessioned 2014-03-01T01:09:41Z
dc.date.available 2014-03-01T01:09:41Z
dc.date.issued 1994 en
dc.identifier.issn 0165-1684 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11145
dc.subject Classification en
dc.subject Itakura distance en
dc.subject Linear prediction en
dc.subject Neural networks en
dc.subject Segmentation en
dc.subject Texture en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Adaptive systems en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Computer architecture en
dc.subject.other Distance measurement en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Parameter estimation en
dc.subject.other Recursive functions en
dc.subject.other Regression analysis en
dc.subject.other Spurious signal noise en
dc.subject.other Textures en
dc.subject.other Adaptive classification en
dc.subject.other Autoregressive texture model en
dc.subject.other Fast multichannel algorithm en
dc.subject.other Image classification en
dc.subject.other Image segmentation en
dc.subject.other Linear prediction en
dc.subject.other Statistical distance en
dc.subject.other Textured image en
dc.subject.other Image processing en
dc.title Adaptive classification of textured images using linear prediction and neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/0165-1684(94)90209-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/0165-1684(94)90209-7 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract A new technique for classifying and segmenting textured images is presented in this paper. This technique uses a fast multichannel algorithm for recursive estimation of autoregressive (AR) texture model parameters, along with a powerful statistical distance measure for adaptive selection of a small representative set of AR texture models. Specific properties of the estimation part of the method are exploited, which severly reduce the computational complexity of the distance measure, while robustness of classification with respect to additive noise is achieved using a higher-order version of the estimation part of the algorithm. Based on the small size of the selected set of AR texture models, appropriately designed and recursively constructed neural network architectures are included in the proposed scheme for adaptive classification and segmentation of textured images. © 1994. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Signal Processing en
dc.identifier.doi 10.1016/0165-1684(94)90209-7 en
dc.identifier.isi ISI:A1994NE15200007 en
dc.identifier.volume 36 en
dc.identifier.issue 2 en
dc.identifier.spage 209 en
dc.identifier.epage 232 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής