dc.contributor.author |
Bonanos, S |
en |
dc.contributor.author |
Kyriakopoulos, E |
en |
dc.date.accessioned |
2014-03-01T01:09:42Z |
|
dc.date.available |
2014-03-01T01:09:42Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0264-9381 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11149 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
RELATIVITY |
en |
dc.subject.other |
METRICS |
en |
dc.title |
An algebraically general, stationary, axisymmetric, perfect fluid solution of Einstein's equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0264-9381/11/2/001 |
en |
heal.identifier.secondary |
001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0264-9381/11/2/001 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A three-parameter solution of Einstein's equations for the interior of a uniformly rotating, stationary, axisymmetric perfect fluid is presented. The solution is analytically simple, behaves properly on the axis, and has finite non-rotating and vacuum limits. It is algebraically general and has no higher symmetry. The equation of state is mu + 3p = 0, and the fluid's vorticity and acceleration vectors are parallel. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Classical and Quantum Gravity |
en |
dc.identifier.doi |
10.1088/0264-9381/11/2/001 |
en |
dc.identifier.isi |
ISI:A1994NA11200001 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
L23 |
en |
dc.identifier.epage |
L28 |
en |