HEAL DSpace

Bursty traffic modeling and efficient analysis algorithms via fluid-flow models for ATM IBCN

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kontovasilis, KP en
dc.contributor.author Mitrou, NM en
dc.date.accessioned 2014-03-01T01:09:45Z
dc.date.available 2014-03-01T01:09:45Z
dc.date.issued 1994 en
dc.identifier.issn 02545330 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11172
dc.subject Bursty Traffic en
dc.subject Efficiency Analysis en
dc.subject Eigenvalues en
dc.subject Eigenvectors en
dc.subject Fluid Flow en
dc.subject Fluid Model en
dc.subject Newton Method en
dc.subject Nonlinear Equation en
dc.subject Performance Measure en
dc.subject Performance Metric en
dc.subject Power Method en
dc.subject Quadratic Convergence en
dc.subject Singular System en
dc.subject Time Reversal en
dc.subject Upper Bound en
dc.subject Partial Order en
dc.title Bursty traffic modeling and efficient analysis algorithms via fluid-flow models for ATM IBCN en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02031601 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02031601 en
heal.publicationDate 1994 en
heal.abstract In this paper fluid models for heterogeneous multiplexed traffic are considered. First, some extensions to the general theory applicable to superposed, time-reversible Markovian Rate Processes are given. These refer to the connection between performance metrics, the consideration for singular systems and the continuity of the solution, with respect to the system parameters. The general framework is then carried over to the heterogeneous multiplexing of ON/OFF sources. By combining the general theory with the special structure of the ON/OFF sources several important facets of this structure are highlighted. As a result, more powerful methods that improve computation speed, stability and ease of implementation are produced. More specifically, the numerical part of the method is reduced to a solution of a nonlinear equation per system eigenvalue. The solution is obtainable through a variant of the (locally quadratically convergent) Newton method. For this method, easily computable starting values that guarantee convergence are given. In addition, explicit expressions for the eigenvectors are provided with the potentially unstable quantities factored-out. The paper also provides explicit and stably computable formulae for upper bounds to the coefficients of the spectral components, present in the expressions for the performance measures of interest. Moreover, the paper proves a partial ordering property for the system eigenvalues and presents an algorithm that performs full ordering on-line. This, in many cases, results in a great reduction to the amount of computation, without any significant loss of precision. Lastly, the particular case of heterogeneity where the differences are only identified in the rates within bursts is seen to have features resembling homogeneous systems. The possibility to substitute an ""equivalent"" homogeneous system of reduced order, for the original heterogeneous one is addressed. © 1994 J.C. Baltzer AG, Science Publishers. en
heal.publisher Baltzer Science Publishers, Baarn/Kluwer Academic Publishers en
heal.journalName Annals of Operations Research en
dc.identifier.doi 10.1007/BF02031601 en
dc.identifier.volume 49 en
dc.identifier.issue 1 en
dc.identifier.spage 279 en
dc.identifier.epage 323 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής