dc.contributor.author |
Kaklis, PD |
en |
dc.contributor.author |
Sapidis, NS |
en |
dc.date.accessioned |
2014-03-01T01:09:47Z |
|
dc.date.available |
2014-03-01T01:09:47Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0167-8396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11191 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028483832&partnerID=40&md5=9935effda46d9f318b1260961f3c34c2 |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Curvature sign type boundary conditions |
en |
dc.subject.other |
Parametric cubic spline interpolation |
en |
dc.subject.other |
Interpolation |
en |
dc.title |
Curvature-sign-type boundary conditions in parametric cubic-spline interpolation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
In this paper we prove a necessary and sufficient condition ensuring that the following problem possesses a solution: construct a twice-continuous cubic parametric spline, which interpolates a given set of planar points with a given parametrization and satisfies curvature-sign-type boundary conditions, i.e., the sign of the curvature is prescribed at the boundary points of the data. Based on this solvability condition, we also derive and numerically test a simple interactive algorithm that solves the above problem. © 1994. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Aided Geometric Design |
en |
dc.identifier.isi |
ISI:A1994PB45100005 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
425 |
en |
dc.identifier.epage |
450 |
en |