dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Anastasselou, EG |
en |
dc.date.accessioned |
2014-03-01T01:09:50Z |
|
dc.date.available |
2014-03-01T01:09:50Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11198 |
|
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Computer systems |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Cartesian coordinates |
en |
dc.subject.other |
Cartesian equation |
en |
dc.subject.other |
Equation of caustics |
en |
dc.subject.other |
Equivalent unique equation |
en |
dc.subject.other |
Grobner bases algorithm |
en |
dc.subject.other |
Maple V computer system |
en |
dc.subject.other |
Parametric equation |
en |
dc.subject.other |
Software package - GROBNER |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.title |
Derivation of the equation of caustics in cartesian coordinates with maple |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(94)90151-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(94)90151-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
The well-known equation of caustics about crack tips in experimental fracture mechanics is usually expressed in the form of two equations for the Cartesian coordinates (x,y) with a parameter (an appropriate polar angle playing the rǒle of this parameter). Here we derive the equivalent unique equation (but without a parameter) also in Cartesian coordinates with the help of the computer algebra system Maple V by using the available Gröbner-bases algorithm. The obtained Cartesian equation is of the sixth degree and it can be solved in closed form with respect to y yielding an explicit result y =y(x). The same equation is also checked in two special cases, where it gives the same results as the equivalent pair of parametric equations. Analogous, more general results can also be derived. © 1994. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(94)90151-1 |
en |
dc.identifier.isi |
ISI:A1994NK57600015 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
147 |
en |
dc.identifier.epage |
149 |
en |