HEAL DSpace

Design of axisymmetric channels with rotational flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koumandakis, M en
dc.contributor.author Dedoussis, V en
dc.contributor.author Chaviaropoulos, P en
dc.contributor.author Papailiou, KD en
dc.date.accessioned 2014-03-01T01:09:50Z
dc.date.available 2014-03-01T01:09:50Z
dc.date.issued 1994 en
dc.identifier.issn 0748-4658 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11199
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0028495236&partnerID=40&md5=612e6a4f7e1babea8cdb6f1fc80e3b11 en
dc.subject.classification Engineering, Aerospace en
dc.subject.other Aerodynamics en
dc.subject.other Axial flow turbomachinery en
dc.subject.other Channel flow en
dc.subject.other Ducts en
dc.subject.other Intake systems en
dc.subject.other Inverse problems en
dc.subject.other Iterative methods en
dc.subject.other Mathematical transformations en
dc.subject.other Rotational flow en
dc.subject.other Vectors en
dc.subject.other Velocity en
dc.subject.other Axisymmetric channels en
dc.subject.other Clebsch transformation en
dc.subject.other Potential function/stream function formulation en
dc.subject.other Airfoils en
dc.title Design of axisymmetric channels with rotational flows en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1994 en
heal.abstract The purpose of this article is to present an inverse subsonic inviscid method for the design of axisymmetric channels, with rotational flow. The rotational character of the flow is due to prescribed total enthalpy, entropy, and/or swirl gradients along the inlet of the channel. The method is based on a potential function/stream function formulation. The Clebsch transformation is employed to decompose the meridional velocity vector into a potential and a rotational part. The rotational part is shown to be proportional to the total enthalpy gradient, the coefficient of proportionality being the drift function. A body-fitted coordinate transformation is employed to map the sought boundaries on the (phi, psi) space. The governing equation for the magnitude of the meridional velocity component is derived by treating the inverse problem on the (phi, psi) space as a purely geometric one, employing differential geometry principles. The (meridional) velocity equation is coupled in a nonlinear manner with a transport equation for the drift function and with the geometry via the radial coordinate. The integration of the governing equations is performed on an auxiliary computational grid using a simple iterative scheme. The geometry, in particular, is determined by integrating Frenet equations along the grid lines. The present design method has been applied successfully to the ''reproduction'' of two ''real-life'' geometries concerning the annular duct of a two-stage axial compressor as well as a radial one. en
heal.publisher AIAA, Washington, DC, United States en
heal.journalName Journal of Propulsion and Power en
dc.identifier.isi ISI:A1994PG53600019 en
dc.identifier.volume 10 en
dc.identifier.issue 5 en
dc.identifier.spage 729 en
dc.identifier.epage 735 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής