dc.contributor.author |
Pentaris, A |
en |
dc.contributor.author |
Nikolados, K |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.date.accessioned |
2014-03-01T01:09:50Z |
|
dc.date.available |
2014-03-01T01:09:50Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11201 |
|
dc.subject |
NAVIER-STOKES EQUATIONS |
en |
dc.subject |
LAMINAR FLOW |
en |
dc.subject |
TURBULENT FLOW |
en |
dc.subject |
PSEUDOCOMPRESSIBILITY METHOD |
en |
dc.subject |
PRESSURE CORRECTION METHOD |
en |
dc.subject |
PROJECTION METHOD |
en |
dc.subject |
ARTIFICIAL DISSIPATION |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Laminar flow |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
Approximate factorization technique |
en |
dc.subject.other |
Artificial dissipation |
en |
dc.subject.other |
Pressure correction method |
en |
dc.subject.other |
Projection method |
en |
dc.subject.other |
Pseudocompressibility method |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
Incompressible Flow |
en |
dc.subject.other |
Navier-Stokes Equations |
en |
dc.title |
Development of projection and artificial compressibility methodologies using the approximate factorization technique |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/fld.1650191105 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/fld.1650191105 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Predictions for two-dimensional, steady, incompressible flows under both laminar and turbulent conditions are presented. The standard k-epsilon turbulence model is used for the turbulent flows. The computational method is based on the approximate factorization technique. The coupled approach is used to link the equations of motion and the turbulence model equations. Mass conservation is enforced by either the pseudocompressibility method or the pressure correction method. Comparison of the two methods shows a superiority of the pressure correction method. Second- and fourth-order artificial dissipation terms are used in order to achieve good convergence and to handle the turbulence model equations efficiently. Several internal and external test cases are investigated, including attached and separated flows. |
en |
heal.publisher |
John Wiley & Sons Ltd, Chichester, United Kingdom |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/fld.1650191105 |
en |
dc.identifier.isi |
ISI:A1994PW39500004 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1013 |
en |
dc.identifier.epage |
1038 |
en |