HEAL DSpace

Development of projection and artificial compressibility methodologies using the approximate factorization technique

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Pentaris, A en
dc.contributor.author Nikolados, K en
dc.contributor.author Tsangaris, S en
dc.date.accessioned 2014-03-01T01:09:50Z
dc.date.available 2014-03-01T01:09:50Z
dc.date.issued 1994 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11201
dc.subject NAVIER-STOKES EQUATIONS en
dc.subject LAMINAR FLOW en
dc.subject TURBULENT FLOW en
dc.subject PSEUDOCOMPRESSIBILITY METHOD en
dc.subject PRESSURE CORRECTION METHOD en
dc.subject PROJECTION METHOD en
dc.subject ARTIFICIAL DISSIPATION en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Approximation theory en
dc.subject.other Convergence of numerical methods en
dc.subject.other Laminar flow en
dc.subject.other Mathematical models en
dc.subject.other Navier Stokes equations en
dc.subject.other Turbulence en
dc.subject.other Turbulent flow en
dc.subject.other Approximate factorization technique en
dc.subject.other Artificial dissipation en
dc.subject.other Pressure correction method en
dc.subject.other Projection method en
dc.subject.other Pseudocompressibility method en
dc.subject.other Compressible flow en
dc.subject.other Incompressible Flow en
dc.subject.other Navier-Stokes Equations en
dc.title Development of projection and artificial compressibility methodologies using the approximate factorization technique en
heal.type journalArticle en
heal.identifier.primary 10.1002/fld.1650191105 en
heal.identifier.secondary http://dx.doi.org/10.1002/fld.1650191105 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract Predictions for two-dimensional, steady, incompressible flows under both laminar and turbulent conditions are presented. The standard k-epsilon turbulence model is used for the turbulent flows. The computational method is based on the approximate factorization technique. The coupled approach is used to link the equations of motion and the turbulence model equations. Mass conservation is enforced by either the pseudocompressibility method or the pressure correction method. Comparison of the two methods shows a superiority of the pressure correction method. Second- and fourth-order artificial dissipation terms are used in order to achieve good convergence and to handle the turbulence model equations efficiently. Several internal and external test cases are investigated, including attached and separated flows. en
heal.publisher John Wiley & Sons Ltd, Chichester, United Kingdom en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/fld.1650191105 en
dc.identifier.isi ISI:A1994PW39500004 en
dc.identifier.volume 19 en
dc.identifier.issue 11 en
dc.identifier.spage 1013 en
dc.identifier.epage 1038 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record