dc.contributor.author |
Paraskevopoulos, PN |
en |
dc.contributor.author |
Koumboulis, FN |
en |
dc.contributor.author |
Tzierakis, KG |
en |
dc.date.accessioned |
2014-03-01T01:09:51Z |
|
dc.date.available |
2014-03-01T01:09:51Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11210 |
|
dc.subject |
Disturbance Rejection |
en |
dc.subject |
Linear Algebra |
en |
dc.subject |
Necessary and Sufficient Condition |
en |
dc.subject |
State Feedback |
en |
dc.subject |
State Space |
en |
dc.subject |
Structural Properties |
en |
dc.subject |
System of Equations |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Control equipment |
en |
dc.subject.other |
Control system analysis |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Identification (control systems) |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
State estimation |
en |
dc.subject.other |
State space methods |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Disturbance rejection |
en |
dc.subject.other |
Left-invertible generalized state space systems |
en |
dc.subject.other |
State feedback |
en |
dc.subject.other |
Linear control systems |
en |
dc.title |
Disturbance rejection of left-invertible generalized state space systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/9.273365 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/9.273365 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A new approach is presented for the study of the disturbance rejection of left-invertible generalized state space systems via pure proportional state feedback, reducing the problem to that of solving a linear algebraic system of equations. On the basis of this system of equations, the necessary and sufficient conditions for the problem to have a solution are established in a form of simple algebraic criteria (thus reducing the computational effort over known results), and the general analytical expressions of the controller matrices are derived. The structural properties of the closed-loop system (feedback invariant poles, disturbance rejection with simultaneous elimination of the infinite poles) are studied. |
en |
heal.publisher |
Publ by IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/9.273365 |
en |
dc.identifier.isi |
ISI:A1994MV77300031 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
185 |
en |
dc.identifier.epage |
190 |
en |