dc.contributor.author |
Sophianopoulos, DS |
en |
dc.contributor.author |
Kounadis, AN |
en |
dc.date.accessioned |
2014-03-01T01:09:51Z |
|
dc.date.available |
2014-03-01T01:09:51Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0733-9399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11215 |
|
dc.subject |
Dynamic Stability |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Axial joint displacements |
en |
dc.subject.other |
Galerkin's method |
en |
dc.subject.other |
Seventh order Runge Kutta Verner scheme |
en |
dc.subject.other |
Two bar geometrically imperfect frame |
en |
dc.subject.other |
Structural frames |
en |
dc.title |
Dynamic stability of imperfect frames under joint displacements |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-9399(1994)120:8(1661) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1661) |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
In this investigation a nonlinear dynamic-stability analysis is performed on a two-bar geometrically imperfect frame subjected to an axial displacement of its joint, either suddenly applied or time dependent. The dynamic response of the frame is governed by a coupled system of two one-dimensional partial differential equations for the axial and lateral motion of each bar. One and two-mode solutions are thoroughly discussed for various geometric configurations of the frame. Dynamic buckling occurs when the corresponding frame under static loading loses its stability through a limit point. This happens for initial bar curvatures above a certain critical value; below this value the frame is dynamically stable. Numerical results are obtained by using Galerkin's method in connection with the seventh-order Runge-Kutta-Verner scheme with appropriate step size. The results of the one-mode solution are found to be in excellent agreement with those of previous analyses. |
en |
heal.publisher |
Publ by ASCE, New York, NY, United States |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-9399(1994)120:8(1661) |
en |
dc.identifier.isi |
ISI:A1994NY32600004 |
en |
dc.identifier.volume |
120 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1661 |
en |
dc.identifier.epage |
1674 |
en |