HEAL DSpace

Dynamic stability of imperfect frames under joint displacements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sophianopoulos, DS en
dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:09:51Z
dc.date.available 2014-03-01T01:09:51Z
dc.date.issued 1994 en
dc.identifier.issn 0733-9399 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11215
dc.subject Dynamic Stability en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Buckling en
dc.subject.other Dynamic loads en
dc.subject.other Dynamic response en
dc.subject.other Equations of motion en
dc.subject.other Numerical methods en
dc.subject.other Structural analysis en
dc.subject.other System stability en
dc.subject.other Axial joint displacements en
dc.subject.other Galerkin's method en
dc.subject.other Seventh order Runge Kutta Verner scheme en
dc.subject.other Two bar geometrically imperfect frame en
dc.subject.other Structural frames en
dc.title Dynamic stability of imperfect frames under joint displacements en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)0733-9399(1994)120:8(1661) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1661) en
heal.language English en
heal.publicationDate 1994 en
heal.abstract In this investigation a nonlinear dynamic-stability analysis is performed on a two-bar geometrically imperfect frame subjected to an axial displacement of its joint, either suddenly applied or time dependent. The dynamic response of the frame is governed by a coupled system of two one-dimensional partial differential equations for the axial and lateral motion of each bar. One and two-mode solutions are thoroughly discussed for various geometric configurations of the frame. Dynamic buckling occurs when the corresponding frame under static loading loses its stability through a limit point. This happens for initial bar curvatures above a certain critical value; below this value the frame is dynamically stable. Numerical results are obtained by using Galerkin's method in connection with the seventh-order Runge-Kutta-Verner scheme with appropriate step size. The results of the one-mode solution are found to be in excellent agreement with those of previous analyses. en
heal.publisher Publ by ASCE, New York, NY, United States en
heal.journalName Journal of Engineering Mechanics en
dc.identifier.doi 10.1061/(ASCE)0733-9399(1994)120:8(1661) en
dc.identifier.isi ISI:A1994NY32600004 en
dc.identifier.volume 120 en
dc.identifier.issue 8 en
dc.identifier.spage 1661 en
dc.identifier.epage 1674 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής