HEAL DSpace

Exact and first-order error analysis of the Schur and split Schur algorithms: Theory and practice

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glaros, Nicholas en
dc.contributor.author Carayannis, George en
dc.date.accessioned 2014-03-01T01:09:52Z
dc.date.available 2014-03-01T01:09:52Z
dc.date.issued 1994 en
dc.identifier.issn 1053-587X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11224
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Convergence of numerical methods en
dc.subject.other Correlation methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Mathematical models en
dc.subject.other Recursive functions en
dc.subject.other Signal filtering and prediction en
dc.subject.other Durbin algorithms en
dc.subject.other First order error analysis en
dc.subject.other Levinson algorithms en
dc.subject.other Schur algorithms en
dc.subject.other Split Schur algorithms en
dc.subject.other Toeplitz solving algorithms en
dc.subject.other Error analysis en
dc.title Exact and first-order error analysis of the Schur and split Schur algorithms: Theory and practice en
heal.type journalArticle en
heal.identifier.primary 10.1109/78.301831 en
heal.identifier.secondary http://dx.doi.org/10.1109/78.301831 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract A new analytical methodology is introduced here for fixed-point error analysis of various Toeplitz solving algorithms. The method is applied to the very useful Schur algorithm and the lately introduced split Schur algorithm. Both exact and first order error analysis are provided in this paper. The theoretical results obtained are consistent with experimentation. Besides the intrinsic symmetry of the error propagation recursive formulae, the technique presented here is capable of explaining many practical situations: For signals having a small eigenvalue spread the Schur algorithm behaves better than the split Schur in the fixed-point environment. The intermediate coefficients of the split Schur algorithm leading to the PARCOR's cannot serve as alternatives to the reflection coefficients in error sensitive applications. It is demonstrated that the error-weight vectors of the Schur propagation mechanism follow Levinson-like (second order) recursions, while the same vectors of the split Schur propagation mechanism follow split Levinson-like (third-order) recursions. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName IEEE Transactions on Signal Processing en
dc.identifier.doi 10.1109/78.301831 en
dc.identifier.isi ISI:A1994PB60100002 en
dc.identifier.volume 42 en
dc.identifier.issue 8 en
dc.identifier.spage 1916 en
dc.identifier.epage 1938 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής