dc.contributor.author |
Simitzis, J |
en |
dc.date.accessioned |
2014-03-01T01:09:54Z |
|
dc.date.available |
2014-03-01T01:09:54Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0165-2370 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11243 |
|
dc.subject |
Composites |
en |
dc.subject |
Gas chromatography |
en |
dc.subject |
Novolac |
en |
dc.subject |
Olive stone biomass |
en |
dc.subject |
Pyrolysis |
en |
dc.subject |
Thermogravimetric analysis |
en |
dc.subject.classification |
Chemistry, Analytical |
en |
dc.subject.classification |
Spectroscopy |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Carbonization |
en |
dc.subject.other |
Chemical bonds |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
Crosslinking |
en |
dc.subject.other |
Curing |
en |
dc.subject.other |
Gas chromatography |
en |
dc.subject.other |
Lignin |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
Monitoring |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Thermogravimetric analysis |
en |
dc.subject.other |
Hexamethylenetetramine |
en |
dc.subject.other |
Novolac resin |
en |
dc.subject.other |
Olive stone biomass |
en |
dc.subject.other |
Stabilization effects |
en |
dc.subject.other |
Pyrolysis |
en |
dc.title |
High temperature pyrolysis of novolac resin biomass composites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0165-2370(94)00810-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0165-2370(94)00810-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Composites of novolac resin (N.R.) and biomass derived from olive stones(OL.B.), in various proportions, were cured with hexamethylenetetramine (HTA) and pyrolyzed up to 900 degrees C. The pyrolysis mechanism was monitored using TGA and gas chromatography. The pyrolysis regions, as well as important pyrolysis parameters of the materials used, were determined. Cured and pyrolyzed composites of N.R./OL.B. varied from 20/80 to 75/25, exhibiting at temperatures up to approx. 600 degrees C lower weight losses than expected by the rule of mixtures, owing to additional cross linkages of lignin with HTA. This stabilization effect vanished during pyrolysis at higher temperatures because of the breaking of other chemical bonds, e.g. cross linkages. The release of CH, during the pyrolysis of OL.B. is derived from the lignin contained in OL.B. The other gases, CO, CO2 and H-2, could be formed from celluose, hemicellulose and lignin which are the main components of OL.B. The use of N.R. in the initial mixture with OL.B. reduces the weight losses during pyrolysis compared with OL.B. alone. A heating rate of 1O degrees C/min was necessary for the carbonization processes of OL.B. and its mixtures with N.R. in order to promote minimum weight loss of material and minimum pyrolysis time. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Analytical and Applied Pyrolysis |
en |
dc.identifier.doi |
10.1016/0165-2370(94)00810-8 |
en |
dc.identifier.isi |
ISI:A1994PY55800003 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
161 |
en |
dc.identifier.epage |
171 |
en |