dc.contributor.author |
Delopoulos, Anastasios |
en |
dc.contributor.author |
Tirakis, Andreas |
en |
dc.contributor.author |
Kollias, Stefanos |
en |
dc.date.accessioned |
2014-03-01T01:09:56Z |
|
dc.date.available |
2014-03-01T01:09:56Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
1045-9227 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11251 |
|
dc.subject |
Additive Noise |
en |
dc.subject |
Efficient Implementation |
en |
dc.subject |
Image Classification |
en |
dc.subject |
Image Representation |
en |
dc.subject |
Simulation Study |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Classification (of information) |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Invariance |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Signal distortion |
en |
dc.subject.other |
Invariant image classification |
en |
dc.subject.other |
Multilayer perceptrons |
en |
dc.subject.other |
Perceptron theory |
en |
dc.subject.other |
Triple correlation based neural networks |
en |
dc.subject.other |
Two dimensional gray scale images |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Invariant image classification using triple-correlation-based neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/72.286911 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/72.286911 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Triple-correlation-based neural networks are introduced and used in this paper for invariant classification of two-dimensional gray scale images. Third-order correlations of an image are appropriately clustered, in spatial or spectral domain, to generate an equivalent image representation that is invariant with respect to translation, rotation, and dilation. An efficient implementation scheme is also proposed, which is robust to distortions, insensitive to additive noise, and classifies the original image using adequate neural network architectures applied directly to 2-D image representations. Third-order neural networks are shown to be a specific category of triple-correlation-based networks, applied either to binary or gray-scale images. A simulation study is given, which illustrates the theoretical developments, using synthetic and real image data. |
en |
heal.publisher |
Publ by IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Transactions on Neural Networks |
en |
dc.identifier.doi |
10.1109/72.286911 |
en |
dc.identifier.isi |
ISI:A1994NR36000007 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
392 |
en |
dc.identifier.epage |
408 |
en |