HEAL DSpace

Invariant image classification using triple-correlation-based neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Delopoulos, Anastasios en
dc.contributor.author Tirakis, Andreas en
dc.contributor.author Kollias, Stefanos en
dc.date.accessioned 2014-03-01T01:09:56Z
dc.date.available 2014-03-01T01:09:56Z
dc.date.issued 1994 en
dc.identifier.issn 1045-9227 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11251
dc.subject Additive Noise en
dc.subject Efficient Implementation en
dc.subject Image Classification en
dc.subject Image Representation en
dc.subject Simulation Study en
dc.subject Neural Network en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Classification (of information) en
dc.subject.other Computer architecture en
dc.subject.other Correlation methods en
dc.subject.other Image analysis en
dc.subject.other Invariance en
dc.subject.other Mathematical models en
dc.subject.other Pattern recognition en
dc.subject.other Signal distortion en
dc.subject.other Invariant image classification en
dc.subject.other Multilayer perceptrons en
dc.subject.other Perceptron theory en
dc.subject.other Triple correlation based neural networks en
dc.subject.other Two dimensional gray scale images en
dc.subject.other Neural networks en
dc.title Invariant image classification using triple-correlation-based neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1109/72.286911 en
heal.identifier.secondary http://dx.doi.org/10.1109/72.286911 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract Triple-correlation-based neural networks are introduced and used in this paper for invariant classification of two-dimensional gray scale images. Third-order correlations of an image are appropriately clustered, in spatial or spectral domain, to generate an equivalent image representation that is invariant with respect to translation, rotation, and dilation. An efficient implementation scheme is also proposed, which is robust to distortions, insensitive to additive noise, and classifies the original image using adequate neural network architectures applied directly to 2-D image representations. Third-order neural networks are shown to be a specific category of triple-correlation-based networks, applied either to binary or gray-scale images. A simulation study is given, which illustrates the theoretical developments, using synthetic and real image data. en
heal.publisher Publ by IEEE, Piscataway, NJ, United States en
heal.journalName IEEE Transactions on Neural Networks en
dc.identifier.doi 10.1109/72.286911 en
dc.identifier.isi ISI:A1994NR36000007 en
dc.identifier.volume 5 en
dc.identifier.issue 3 en
dc.identifier.spage 392 en
dc.identifier.epage 408 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής