HEAL DSpace

Lattice-Subspaces of C[0,1] and Positive Bases

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Polyrakis, IA en
dc.date.accessioned 2014-03-01T01:09:57Z
dc.date.available 2014-03-01T01:09:57Z
dc.date.issued 1994 en
dc.identifier.issn 0022-247X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11263
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.title Lattice-Subspaces of C[0,1] and Positive Bases en
heal.type journalArticle en
heal.identifier.primary 10.1006/jmaa.1994.1178 en
heal.identifier.secondary http://dx.doi.org/10.1006/jmaa.1994.1178 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract A closed vector subspace of a vector lattice E is a lattice-subspace of E if X with the induced ordering is a vector lattice in its own right-but not necessarily a vector sublattice. In this work, we remark that C[0, 1] is a universal Banach lattice in the sense that every separable Banach lattice is order-isomorphic to a closed lattice-subspace of C[0, 1]. In addition, we show that (up to an order-isomorphism) if a closed lattice-subspace of C[0, 1] has a positive basis (bn), then for each n there exists a subinterval Jn on which bn is positive and every other element of this basis vanishes. By means of our main result, we present necessary and sufficient conditions that guarantee the existence of positive bases in an arbitrary lattice-subspace of C[0, 1]. These results are related to the general existence problem of positive bases in Banach lattices as well as the existence of unconditional bases in Banach spaces. © 1994 Academic Press. All rights reserved. en
heal.publisher ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS en
heal.journalName Journal of Mathematical Analysis and Applications en
dc.identifier.doi 10.1006/jmaa.1994.1178 en
dc.identifier.isi ISI:A1994NQ16500001 en
dc.identifier.volume 184 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 18 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record