dc.contributor.author |
Batakis, NA |
en |
dc.contributor.author |
Kehagias, AA |
en |
dc.date.accessioned |
2014-03-01T01:10:00Z |
|
dc.date.available |
2014-03-01T01:10:00Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0264-9381 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11289 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
COMPACT MATRIX PSEUDOGROUPS |
en |
dc.subject.other |
NONCOMMUTATIVE GEOMETRY |
en |
dc.subject.other |
HIGGS FIELDS |
en |
dc.subject.other |
GAUGE-THEORY |
en |
dc.subject.other |
SYMMETRY |
en |
dc.subject.other |
ALGEBRAS |
en |
dc.subject.other |
BOSONS |
en |
dc.title |
On the construction of SU(n) × U(1) models in a non-commutative geometry setting |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0264-9381/11/11/006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0264-9381/11/11/006 |
en |
heal.identifier.secondary |
006 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A gauge theory is developed in the framework of non-commutative geometry (NCG), the latter exemplified in an A(l,m) bigraded-algebra setting. Symmetries and representations are derived from the general SU(n+1) group, with a glimpse to the case of SU(n/1) supergroups. The ordinary gauge group involved is actually SU(n)xU(1) spontaneously broken down to SU(n-1) by means of a Higgs potential, emerging in the remarkable NCG pattern. The special n=2 case in the A(2,4) algebra is treated in full detail as a prototype for the construction of more realistic models. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Classical and Quantum Gravity |
en |
dc.identifier.doi |
10.1088/0264-9381/11/11/006 |
en |
dc.identifier.isi |
ISI:A1994PU75100006 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
2627 |
en |
dc.identifier.epage |
2644 |
en |