dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Anastasselos, GT |
en |
dc.date.accessioned |
2014-03-01T01:10:00Z |
|
dc.date.available |
2014-03-01T01:10:00Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11291 |
|
dc.subject |
Stress Intensity Factor |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Crack propagation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Structural loads |
en |
dc.subject.other |
Structures (built objects) |
en |
dc.subject.other |
Tensile testing |
en |
dc.subject.other |
Plane isotropic elasticity |
en |
dc.subject.other |
Stress intensity factors |
en |
dc.subject.other |
Symmetric tensile loading |
en |
dc.subject.other |
Transcendental functions |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
On the evaluation of stress intensity factors for a simple crack under parametric loading |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0045-7949(05)80019-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0045-7949(05)80019-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Two analytical approaches for the evaluation of stress intensity factors at the tips of a single straight crack in plane isotropic elasticity under symmetric tensile loading along the crack edges including a parameter are considered. The first method leads to an ordinary differential equation for the stress intensity factor (or to a system of such equations) with respect to the loading parameter, whereas the second method leads to closed-form results for the related integral by using Laplace transform techniques. Several elementary transcendental functions, such as the exponential function, were used in the loading distribution for an illustration of the present approaches and related results are presented. The computer algebra system Maple V was also used together with Gröbner bases (for the derivation of the differential equations) and with definite integration (for the derivation of the closed-form formulae). © 1994 Elsevier Science Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/S0045-7949(05)80019-7 |
en |
dc.identifier.isi |
ISI:A1994NY72000019 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
791 |
en |
dc.identifier.epage |
794 |
en |