dc.contributor.author |
Savvas, TA |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.contributor.author |
Papaspyrides, CD |
en |
dc.date.accessioned |
2014-03-01T01:10:00Z |
|
dc.date.available |
2014-03-01T01:10:00Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11293 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028174964&partnerID=40&md5=78ee6a0947ded558e07d48b7fc885e9b |
en |
dc.subject |
carboxy-methyl cellulose |
en |
dc.subject |
flow simulation |
en |
dc.subject |
non-Newtonian polymer solutions |
en |
dc.subject |
poly(vynil chloride) |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Anemometers |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Flow visualization |
en |
dc.subject.other |
Laminar flow |
en |
dc.subject.other |
Laser Doppler velocimeters |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Pipe flow |
en |
dc.subject.other |
Polyvinyl chlorides |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Viscosity of liquids |
en |
dc.subject.other |
Carboxymethyl cellulose |
en |
dc.subject.other |
Cyclohexanone |
en |
dc.subject.other |
Non Newtonian polymer solutions |
en |
dc.subject.other |
Shear viscosity |
en |
dc.subject.other |
Non Newtonian flow |
en |
dc.subject.other |
Cyclohexanone |
en |
dc.subject.other |
Laminar Flow |
en |
dc.subject.other |
Non-Newtonian Flow |
en |
dc.subject.other |
Polyvinyl Chloride |
en |
dc.subject.other |
Solvents |
en |
dc.title |
On the flow of non-Newtonian polymer solutions |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
This paper presents a study of the flow of non-Newtonian polymer solutions. The predictions obtained by a numerical technique are compared with a derived analytical solution and with experimental measurements. Poly(vinyl chloride) (PVC) solutions in cyclohexanone were prepared in the concentration range between 16.67 and 20.24% w/w to determine the shear viscosity functions by means of a Brookfield RVT viscometer. A computer code was employed to simulate the laminar flow of a 20% w/w solution in a pipe. Results for the fully developed flow are in excellent agreement with the derived analytical solution and are also verified experimentally by measuring fluid velocity in a real pipe, using a laser-Doppler anemometer. Furthermore, the laminar flow of a Newtonian and an Ellis fluid in a pipe as well as the flow of a power law fluid in a sudden enlargement are simulated with the same code, giving predictions consistent with theory. It is concluded that computer simulation is a powerful and accurate technique for predicting the flow behavior of non- Newtonian polymer solutions. © 1994. |
en |
heal.publisher |
BUTTERWORTH-HEINEMANN |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.isi |
ISI:A1994MM12700002 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
14 |
en |
dc.identifier.epage |
22 |
en |