dc.contributor.author |
Markatos, NC |
en |
dc.contributor.author |
Kotsifaki, CA |
en |
dc.date.accessioned |
2014-03-01T01:10:03Z |
|
dc.date.available |
2014-03-01T01:10:03Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11301 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028671707&partnerID=40&md5=83f39efa39363af264528e25ebeafd70 |
en |
dc.subject |
counter-gradient diffusion |
en |
dc.subject |
numerical solution |
en |
dc.subject |
premixed |
en |
dc.subject |
reaction |
en |
dc.subject |
turbulent |
en |
dc.subject |
two-fluid |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Combustion |
en |
dc.subject.other |
Density (specific gravity) |
en |
dc.subject.other |
Ducts |
en |
dc.subject.other |
Flame research |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Oscillations |
en |
dc.subject.other |
Pressure |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
Volume fraction |
en |
dc.subject.other |
Counter gradient diffusion |
en |
dc.subject.other |
Momentum transfer |
en |
dc.subject.other |
One dimensional |
en |
dc.subject.other |
Turbulent premixed flames |
en |
dc.subject.other |
Two fluid modelling |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Flames |
en |
dc.subject.other |
Modelling-Mathematical |
en |
dc.subject.other |
Turbulence |
en |
dc.title |
One-dimensional, two-fluid modelling of turbulent premixed flames |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
The ""two-fluid"" mathematical model for turbulent combustion is applied to a one-dimensional, premixed, stabilized ducted flame. The flame is assumed to consist of two interspersed fluids (""reactants"" and ""products""), each characterized by its own properties and interacting through the exchange of mass, heat, and momentum. The distributions of pressure, densities, velocities, and volume fractions across the duct were successfully simulated. From a parametric study on the effects of the empirical constants involved in the interfluid relations, the significant dependence of the system on the parameters that characterize the mass transfer rate and the relative effect of mass transfer to momentum transfer was confirmed. The application of the model to transient states proved its ability to predict system oscillations. © 1994. |
en |
heal.publisher |
BUTTERWORTH-HEINEMANN |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.isi |
ISI:A1994PR02500001 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
646 |
en |
dc.identifier.epage |
657 |
en |