dc.contributor.author |
Kanarachos, AE |
en |
dc.contributor.author |
Pantelelis, NG |
en |
dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T01:10:12Z |
|
dc.date.available |
2014-03-01T01:10:12Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11335 |
|
dc.subject |
Euler Equation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Algebraic multiblock method |
en |
dc.subject.other |
Conjugate gradient squared method |
en |
dc.subject.other |
Discretization method |
en |
dc.subject.other |
Domain decomposition method |
en |
dc.subject.other |
Implicit upward finite volume method |
en |
dc.subject.other |
Multigrid method |
en |
dc.subject.other |
Sequential processing |
en |
dc.subject.other |
Time marching Euler equations |
en |
dc.subject.other |
Compressible flow |
en |
dc.title |
Recent developments in the algebraic multiblock method for Euler equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7825(94)90132-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7825(94)90132-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
In this paper the algebraic multiblock method is presented and applied to the solution of the Euler equations used to model inviscid compressible flow problems. The method employs two extreme grids aimed at combining multigrid and domain decomposition ideas. The fine grid is used by the discretization method. The coarse grid results from the fine grid and defines the domain partitioning of the solution procedure. The multigrid concept is practically simulated by applying the idea of the substructuring technique, in which the 'inner' finite volumes of a block are expressed by their 'boundary' volumes through a matrix inversion process. The conjugate gradient squared method is used for the approximate solution of numerous large block pentadiagonal systems emerging at each time-step. Additionally, efficient preconditioning and smoothing are employed to accelerate the iterative solution. The proposed method is applied for the solution of the time-marching Euler equations using an implicit upwind finite volume method (EUFLEX). Numerical results and comparisons show the efficiency of the proposed method even for sequential processing. © 1994. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/0045-7825(94)90132-5 |
en |
dc.identifier.isi |
ISI:A1994MX36800002 |
en |
dc.identifier.volume |
111 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
235 |
en |
dc.identifier.epage |
254 |
en |