HEAL DSpace

Recent developments in the algebraic multiblock method for Euler equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kanarachos, AE en
dc.contributor.author Pantelelis, NG en
dc.contributor.author Provatidis, CG en
dc.date.accessioned 2014-03-01T01:10:12Z
dc.date.available 2014-03-01T01:10:12Z
dc.date.issued 1994 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11335
dc.subject Euler Equation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Computational methods en
dc.subject.other Finite element method en
dc.subject.other Iterative methods en
dc.subject.other Mathematical models en
dc.subject.other Matrix algebra en
dc.subject.other Numerical methods en
dc.subject.other Algebraic multiblock method en
dc.subject.other Conjugate gradient squared method en
dc.subject.other Discretization method en
dc.subject.other Domain decomposition method en
dc.subject.other Implicit upward finite volume method en
dc.subject.other Multigrid method en
dc.subject.other Sequential processing en
dc.subject.other Time marching Euler equations en
dc.subject.other Compressible flow en
dc.title Recent developments in the algebraic multiblock method for Euler equations en
heal.type journalArticle en
heal.identifier.primary 10.1016/0045-7825(94)90132-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/0045-7825(94)90132-5 en
heal.language English en
heal.publicationDate 1994 en
heal.abstract In this paper the algebraic multiblock method is presented and applied to the solution of the Euler equations used to model inviscid compressible flow problems. The method employs two extreme grids aimed at combining multigrid and domain decomposition ideas. The fine grid is used by the discretization method. The coarse grid results from the fine grid and defines the domain partitioning of the solution procedure. The multigrid concept is practically simulated by applying the idea of the substructuring technique, in which the 'inner' finite volumes of a block are expressed by their 'boundary' volumes through a matrix inversion process. The conjugate gradient squared method is used for the approximate solution of numerous large block pentadiagonal systems emerging at each time-step. Additionally, efficient preconditioning and smoothing are employed to accelerate the iterative solution. The proposed method is applied for the solution of the time-marching Euler equations using an implicit upwind finite volume method (EUFLEX). Numerical results and comparisons show the efficiency of the proposed method even for sequential processing. © 1994. en
heal.publisher ELSEVIER SCIENCE SA LAUSANNE en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/0045-7825(94)90132-5 en
dc.identifier.isi ISI:A1994MX36800002 en
dc.identifier.volume 111 en
dc.identifier.issue 3-4 en
dc.identifier.spage 235 en
dc.identifier.epage 254 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής