HEAL DSpace

Two-dimensional filter bank design for optimal reconstruction using limited subband information

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tirakis, Andreas en
dc.contributor.author Delopoulos, Anastasios en
dc.contributor.author Kollias, Stefanos en
dc.date.accessioned 2014-03-01T01:10:29Z
dc.date.available 2014-03-01T01:10:29Z
dc.date.issued 1995 en
dc.identifier.issn 1057-7149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11401
dc.subject Design Technique en
dc.subject Frequency Domain en
dc.subject Image Compression en
dc.subject Optimal Filtering en
dc.subject Perfect Reconstruction en
dc.subject Performance Optimization en
dc.subject Principal Component Analysis en
dc.subject Random Field en
dc.subject Two Dimensions en
dc.subject Filter Bank en
dc.subject Low Resolution en
dc.subject Second Order en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Computational complexity en
dc.subject.other Frequency domain analysis en
dc.subject.other Image compression en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Signal filtering and prediction en
dc.subject.other Perfect reconstruction filter banks en
dc.subject.other Subband signals en
dc.subject.other Image reconstruction en
dc.title Two-dimensional filter bank design for optimal reconstruction using limited subband information en
heal.type journalArticle en
heal.identifier.primary 10.1109/83.403423 en
heal.identifier.secondary http://dx.doi.org/10.1109/83.403423 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract In this correspondence, we propose design techniques for analysis and synthesis filters of 2-D perfect reconstruction filter banks (PRFB's) that perform optimal reconstruction when a reduced number of subband signals is used. Based on the minimization of the squared error between the original signal and some low-resolution representation of it, the 2-D filters are optimally adjusted to the statistics of the input images so that most of the signal's energy is concentrated in the first few subband components. This property makes the optimal PRFB's efficient for image compression and pattern representations at lower resolutions for classification purposes. By extending recently introduced ideas from frequency domain principal component analysis to two dimensions, we present results for general 2-D discrete nonstationary and stationary second-order processes, showing that the optimal filters are nonseparable. Particular attention is paid to separable random fields, proving that only the first and last filters of the optimal PRFB are separable in this case. Simulation results that illustrate the theoretical achievements are presented. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName IEEE Transactions on Image Processing en
dc.identifier.doi 10.1109/83.403423 en
dc.identifier.isi ISI:A1995RL51100013 en
dc.identifier.volume 4 en
dc.identifier.issue 8 en
dc.identifier.spage 1160 en
dc.identifier.epage 1165 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής