dc.contributor.author |
Kladas, AG |
en |
dc.contributor.author |
Tegopoulos, JA |
en |
dc.date.accessioned |
2014-03-01T01:10:30Z |
|
dc.date.available |
2014-03-01T01:10:30Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0332-1649 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11402 |
|
dc.subject |
Eddy Current |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Electric conductors |
en |
dc.subject.other |
Electric current distribution |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Magnetostatics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Skin effect |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Eddy current flow |
en |
dc.subject.other |
Scalars |
en |
dc.subject.other |
Eddy currents |
en |
dc.title |
3D eddy currents modelling by using a particular two component technique |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1108/eb051908 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1108/eb051908 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Several formulations have been developed solving 3D eddy current problems by the finite element method based on vector quantities. Scalars, involving only one unknown per node of the mesh seem to be, however, more efficient. A particular scalar potential formulation has already been developed which is able to handle 3D magnetostatics[1],[2]. This technique has been extended for cases involving eddy currents developed at low frequencies, where the skin effect can be neglected[3]. In the present paper a subsequent formulation is developed for 3D eddy current problems where the eddy current flow paths are well defined, including skin effect. This technique leads to a very simple formulation and reduces the computational effort to the solution of a finite element discrete problem involving two unknowns per node. |
en |
heal.publisher |
MCB Univ Press Ltd, Bradford, United Kingdom |
en |
heal.journalName |
COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering |
en |
dc.identifier.doi |
10.1108/eb051908 |
en |
dc.identifier.isi |
ISI:A1995UY10100006 |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
33 |
en |
dc.identifier.epage |
36 |
en |