HEAL DSpace

A boundary integral equation formulation of the Neumann problem for a vector field in R3 with application to potential lifting flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibasakis, KA en
dc.contributor.author Pofitis, GK en
dc.date.accessioned 2014-03-01T01:10:31Z
dc.date.available 2014-03-01T01:10:31Z
dc.date.issued 1995 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11405
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0029512624&partnerID=40&md5=3d509db8c991de576ab723d8d4db7848 en
dc.subject boundary element method en
dc.subject inviscid lifting flows en
dc.subject surface vorticity formulation en
dc.subject Velocity representation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary value problems en
dc.subject.other Calculations en
dc.subject.other Integral equations en
dc.subject.other Kinematics en
dc.subject.other Laplace transforms en
dc.subject.other Numerical methods en
dc.subject.other Potential flow en
dc.subject.other Pressure en
dc.subject.other Three dimensional en
dc.subject.other Vectors en
dc.subject.other Velocity en
dc.subject.other Vortex flow en
dc.subject.other Boundary integral equation en
dc.subject.other Inviscid flow velocity en
dc.subject.other Inviscid lifting flows en
dc.subject.other Neumann problem en
dc.subject.other Pressure distribution en
dc.subject.other Steady flow conditions en
dc.subject.other Surface vorticity formulation en
dc.subject.other Boundary element method en
dc.title A boundary integral equation formulation of the Neumann problem for a vector field in R3 with application to potential lifting flows en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract A velocity-based boundary element technique is presented for the calculation of incompressible, inviscid flow velocity and pressure distributions around arbitrary shaped, three dimensional bodies. The method is based on a boundary integral equation formulation of the exterior Neumann problem for a vector field in R3, which involves surface vorticity distributions as the boundary unknowns. A pressure type Kutta condition is satisfied along the trailing edge of the lifting sections. Application of the numerical scheme in cases of isolated bodies and wings, as well as in cases of complex configurations, in steady flow conditions, has shown that accurate results can be obtained with relatively low computational effort. Capable of treating the terms of the velocity field associated with the spatial vorticity and rate of expansion distributions, the present formulation may find useful applications in the numerical representation of the kinematics of a general flow problem. © 1995. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Analysis with Boundary Elements en
dc.identifier.isi ISI:A1995TL55600002 en
dc.identifier.volume 16 en
dc.identifier.issue 1 en
dc.identifier.spage 5 en
dc.identifier.epage 17 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής