dc.contributor.author |
Belibasakis, KA |
en |
dc.contributor.author |
Pofitis, GK |
en |
dc.date.accessioned |
2014-03-01T01:10:31Z |
|
dc.date.available |
2014-03-01T01:10:31Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11405 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0029512624&partnerID=40&md5=3d509db8c991de576ab723d8d4db7848 |
en |
dc.subject |
boundary element method |
en |
dc.subject |
inviscid lifting flows |
en |
dc.subject |
surface vorticity formulation |
en |
dc.subject |
Velocity representation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Potential flow |
en |
dc.subject.other |
Pressure |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
Vortex flow |
en |
dc.subject.other |
Boundary integral equation |
en |
dc.subject.other |
Inviscid flow velocity |
en |
dc.subject.other |
Inviscid lifting flows |
en |
dc.subject.other |
Neumann problem |
en |
dc.subject.other |
Pressure distribution |
en |
dc.subject.other |
Steady flow conditions |
en |
dc.subject.other |
Surface vorticity formulation |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
A boundary integral equation formulation of the Neumann problem for a vector field in R3 with application to potential lifting flows |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A velocity-based boundary element technique is presented for the calculation of incompressible, inviscid flow velocity and pressure distributions around arbitrary shaped, three dimensional bodies. The method is based on a boundary integral equation formulation of the exterior Neumann problem for a vector field in R3, which involves surface vorticity distributions as the boundary unknowns. A pressure type Kutta condition is satisfied along the trailing edge of the lifting sections. Application of the numerical scheme in cases of isolated bodies and wings, as well as in cases of complex configurations, in steady flow conditions, has shown that accurate results can be obtained with relatively low computational effort. Capable of treating the terms of the velocity field associated with the spatial vorticity and rate of expansion distributions, the present formulation may find useful applications in the numerical representation of the kinematics of a general flow problem. © 1995. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.isi |
ISI:A1995TL55600002 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
5 |
en |
dc.identifier.epage |
17 |
en |