dc.contributor.author |
GIANNAKOGLOU, KC |
en |
dc.contributor.author |
POLITIS, ES |
en |
dc.date.accessioned |
2014-03-01T01:10:42Z |
|
dc.date.available |
2014-03-01T01:10:42Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11429 |
|
dc.subject |
LAMINAR FLOWS |
en |
dc.subject |
INCOMPRESSIBLE FLOWS |
en |
dc.subject |
PRESSURE CORRECTION |
en |
dc.subject |
KRYLOV SUBSPACE METHODS |
en |
dc.subject |
APPROXIMATE FACTORIZATION |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
INTERPOLATION |
en |
dc.subject.other |
GRIDS |
en |
dc.title |
A SEGREGATED IMPLICIT SOLUTION ALGORITHM FOR 2D AND 3D LAMINAR INCOMPRESSIBLE FLOWS |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/fld.1650211105 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/fld.1650211105 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A segregated algorithm for the solution of laminar incompressible, two- and three-dimensional flow problems is presented. This algorithm employs the successive solution of the momentum and continuity equations by means of a decoupled implicit solution method. The inversion of the coefficient matrix which is common for all momentum equations is carried out through an approximate factorization in upper and lower triangular matrices. The divergence-free velocity constraint is satisfied by formulating and solving a pressure correction equation. For the latter a combined application of a preconditioning technique and a Krylov subspace method is employed and proved more efficient than the approximate factorization method. The method exhibits a monotonic convergence, it is not costly in CPU time per iteration and provides accurate solutions which are independent of the underrelaxation parameter used in the momentum equations. Results are presented in two- and three-dimensional flow problems. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS |
en |
dc.identifier.doi |
10.1002/fld.1650211105 |
en |
dc.identifier.isi |
ISI:A1995TJ26900004 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1067 |
en |
dc.identifier.epage |
1086 |
en |