HEAL DSpace

A SEGREGATED IMPLICIT SOLUTION ALGORITHM FOR 2D AND 3D LAMINAR INCOMPRESSIBLE FLOWS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author GIANNAKOGLOU, KC en
dc.contributor.author POLITIS, ES en
dc.date.accessioned 2014-03-01T01:10:42Z
dc.date.available 2014-03-01T01:10:42Z
dc.date.issued 1995 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11429
dc.subject LAMINAR FLOWS en
dc.subject INCOMPRESSIBLE FLOWS en
dc.subject PRESSURE CORRECTION en
dc.subject KRYLOV SUBSPACE METHODS en
dc.subject APPROXIMATE FACTORIZATION en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other INTERPOLATION en
dc.subject.other GRIDS en
dc.title A SEGREGATED IMPLICIT SOLUTION ALGORITHM FOR 2D AND 3D LAMINAR INCOMPRESSIBLE FLOWS en
heal.type journalArticle en
heal.identifier.primary 10.1002/fld.1650211105 en
heal.identifier.secondary http://dx.doi.org/10.1002/fld.1650211105 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract A segregated algorithm for the solution of laminar incompressible, two- and three-dimensional flow problems is presented. This algorithm employs the successive solution of the momentum and continuity equations by means of a decoupled implicit solution method. The inversion of the coefficient matrix which is common for all momentum equations is carried out through an approximate factorization in upper and lower triangular matrices. The divergence-free velocity constraint is satisfied by formulating and solving a pressure correction equation. For the latter a combined application of a preconditioning technique and a Krylov subspace method is employed and proved more efficient than the approximate factorization method. The method exhibits a monotonic convergence, it is not costly in CPU time per iteration and provides accurate solutions which are independent of the underrelaxation parameter used in the momentum equations. Results are presented in two- and three-dimensional flow problems. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS en
dc.identifier.doi 10.1002/fld.1650211105 en
dc.identifier.isi ISI:A1995TJ26900004 en
dc.identifier.volume 21 en
dc.identifier.issue 11 en
dc.identifier.spage 1067 en
dc.identifier.epage 1086 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής