dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Markakis, M |
en |
dc.date.accessioned |
2014-03-01T01:10:47Z |
|
dc.date.available |
2014-03-01T01:10:47Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
00207462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11444 |
|
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Closed Form Solution |
en |
dc.subject |
Fluid Mechanics |
en |
dc.subject |
General Solution |
en |
dc.title |
Ad hoc closed form solutions of the two-dimensional non-linear steady small perturbation equation in fluid mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0020-7462(95)00006-A |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0020-7462(95)00006-A |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Making use of convenient ad hoc assumptions we construct closed-form solutions of the non-linear two-dimensional irrotational steady small perturbation equation appearing in fluid mechanics. The methodologies developed succeed in giving the above solutions expressed in the form of fewer arbitrary functions than needed for general solutions. As an application we specify the above mentioned solutions in the case of the simplified non-linear transonic equation governing the boundary value problem of a two-dimensional flow past a wave shaped wall. © 1995. |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/0020-7462(95)00006-A |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
597 |
en |
dc.identifier.epage |
608 |
en |