dc.contributor.author |
Arvanitis, KG |
en |
dc.date.accessioned |
2014-03-01T01:10:47Z |
|
dc.date.available |
2014-03-01T01:10:47Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0016-0032 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11445 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0029410345&partnerID=40&md5=fc2d3d9f2b6481fa26e43355786afa6a |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Adaptive algorithms |
en |
dc.subject.other |
Closed loop control systems |
en |
dc.subject.other |
Controllability |
en |
dc.subject.other |
Discrete time control systems |
en |
dc.subject.other |
Feedback control |
en |
dc.subject.other |
Linear algebra |
en |
dc.subject.other |
Linear control systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Observability |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Sampled data control systems |
en |
dc.subject.other |
ARMA models |
en |
dc.subject.other |
Certainty equivalence principle |
en |
dc.subject.other |
Continuous time plant |
en |
dc.subject.other |
Convex sets |
en |
dc.subject.other |
Decoupling control problem |
en |
dc.subject.other |
Diophantine equations |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
MIMO systems |
en |
dc.subject.other |
Multirate sampling |
en |
dc.subject.other |
Parameter convergence |
en |
dc.subject.other |
Adaptive control systems |
en |
dc.title |
Adaptive decoupling control of linear systems without a persistent excitation requirement |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
In the present paper, the certainty equivalence principle is used to combine a discrete-time adaptive law with a control structure derived from the decoupling control problem. The proposed control structure is mainly based on a special multirate sampling mechanism of the ouputs of the continuous-time plant under control. Such a control strategy allows us to regulate the outputs of the MIMO sampled closed-loop system independently and does not make assumptions on the plant other than controllability and observability and the knowledge of two sets of structural indices, namely the controllability and the observability indices. On the basis of the proposed indirect adaptive algorithm, the adaptive decoupling control problem is reduced to the determination of a fictitious static state feedback controller, due to the merits of the proposed multirate sampling mechanism. Known techniques usually resort to the direct computation of dynamic controllers. The controller determination reduces to the simple problem of solving a linear algebraic system of equations, whereas in known techniques matrix polynomial Diophantine equations usually need to be solved. Moreover, in the present technique, persistent excitation and, therefore, parameter convergence, of the continuous-time plant is provided without making any special assumption either on the richness of the reference signals or on the existence of specific convex sets in which the estimated parameters belong, or finally on the coprimeness of the polynomials describing the ARMA models, as compared to known adaptive decoupling control schemes. © 1996. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of the Franklin Institute |
en |
dc.identifier.isi |
ISI:A1995UK90400003 |
en |
dc.identifier.volume |
332 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
681 |
en |
dc.identifier.epage |
715 |
en |