dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Kontoravdis, D |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T01:10:56Z |
|
dc.date.available |
2014-03-01T01:10:56Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0941-0643 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11501 |
|
dc.subject |
Constraint satisfaction |
en |
dc.subject |
Discrete optimisation |
en |
dc.subject |
Graph partitioning |
en |
dc.subject |
Higher-order Hopfield |
en |
dc.subject |
Reinforcement learning |
en |
dc.subject |
Set partitioning |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
NETWORKS |
en |
dc.title |
Discrete optimisation based on the combined use of reinforcement and constraint satisfaction schemes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01421961 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01421961 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A new approach is presented for finding near-optimal solutions to discrete optimisation problems that is based on the cooperation of two modules: an optimisation module and a constraint satisfaction module. The optimisation module must be able to search the problem state space through an iterative process of sampling and evaluating the generated samples. To evaluate a generated point, first a constraint satisfaction module is employed to map that point to another one satisfying the problem constraints, and then the cost of the new point is used as the evaluation of the original one. The scheme that we have adopted for testing the effectiveness of the method uses a reinforcement learning algorithm in the optimisation module and a general deterministic constraint satisfaction algorithm in the constraint satisfaction module. Experiments using this scheme for the solution of two optimisation problems indicate that the proposed approach is very effective in providing feasible solutions of acceptable quality. © 1995 Springer-Verlag London Limited. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Neural Computing & Applications |
en |
dc.identifier.doi |
10.1007/BF01421961 |
en |
dc.identifier.isi |
ISI:A1995RL72300005 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
101 |
en |
dc.identifier.epage |
112 |
en |