HEAL DSpace

Discrete optimisation based on the combined use of reinforcement and constraint satisfaction schemes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Likas, A en
dc.contributor.author Kontoravdis, D en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:10:56Z
dc.date.available 2014-03-01T01:10:56Z
dc.date.issued 1995 en
dc.identifier.issn 0941-0643 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11501
dc.subject Constraint satisfaction en
dc.subject Discrete optimisation en
dc.subject Graph partitioning en
dc.subject Higher-order Hopfield en
dc.subject Reinforcement learning en
dc.subject Set partitioning en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other NETWORKS en
dc.title Discrete optimisation based on the combined use of reinforcement and constraint satisfaction schemes en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01421961 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01421961 en
heal.language English en
heal.publicationDate 1995 en
heal.abstract A new approach is presented for finding near-optimal solutions to discrete optimisation problems that is based on the cooperation of two modules: an optimisation module and a constraint satisfaction module. The optimisation module must be able to search the problem state space through an iterative process of sampling and evaluating the generated samples. To evaluate a generated point, first a constraint satisfaction module is employed to map that point to another one satisfying the problem constraints, and then the cost of the new point is used as the evaluation of the original one. The scheme that we have adopted for testing the effectiveness of the method uses a reinforcement learning algorithm in the optimisation module and a general deterministic constraint satisfaction algorithm in the constraint satisfaction module. Experiments using this scheme for the solution of two optimisation problems indicate that the proposed approach is very effective in providing feasible solutions of acceptable quality. © 1995 Springer-Verlag London Limited. en
heal.publisher Springer-Verlag en
heal.journalName Neural Computing & Applications en
dc.identifier.doi 10.1007/BF01421961 en
dc.identifier.isi ISI:A1995RL72300005 en
dc.identifier.volume 3 en
dc.identifier.issue 2 en
dc.identifier.spage 101 en
dc.identifier.epage 112 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής