dc.contributor.author |
Provatidis, ChG |
en |
dc.contributor.author |
Kanarachos, AE |
en |
dc.date.accessioned |
2014-03-01T01:11:03Z |
|
dc.date.available |
2014-03-01T01:11:03Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11537 |
|
dc.subject |
Boundary Element Method |
en |
dc.subject |
Dirichlet Boundary Condition |
en |
dc.subject |
Wave Propagation |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Electromagnetic wave propagation |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Acoustical cavity |
en |
dc.subject.other |
Boundary discretization |
en |
dc.subject.other |
Global functional set |
en |
dc.subject.other |
Mass matrices |
en |
dc.subject.other |
Two dimensional domain |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Further research on the performance of consistent mass matrices using BEM for symmetric/nonsymmetric formulations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00369781 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00369781 |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
This paper deals with the performance of consistent mass matrices for the 2-D scalar wave propagation problem using the Boundary Element Method (BEM), and proposes a new global functional set of base functions capable of avoiding domain integrations, suitable for symmetric and nonsymmetric formulations. The method can be applied to arbitrary shaped two-dimensional domains divided into triangular, rectangular and arbitrary shaped quadrilateral linear or curvilinear (e.g. circular) internal cells. The theory is sustained by numerical results for a rectangular and a circular acoustical cavity under Neumann and Dirichlet boundary conditions. © 1995 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/BF00369781 |
en |
dc.identifier.isi |
ISI:A1995RM69400005 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
207 |
en |