HEAL DSpace

Infinite-dimensional algebras in dimensionally reduced string theory

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kehagias, AA en
dc.date.accessioned 2014-03-01T01:11:09Z
dc.date.available 2014-03-01T01:11:09Z
dc.date.issued 1995 en
dc.identifier.issn 0370-2693 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11554
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0003108115&partnerID=40&md5=14191593d690a702492ed83c3c62469b en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.other MAXWELL FIELD EQUATIONS en
dc.subject.other SYMMETRIC EINSTEIN EQUATIONS en
dc.subject.other STATIONARY en
dc.subject.other DUALITY en
dc.subject.other MODELS en
dc.subject.other SPACE en
dc.title Infinite-dimensional algebras in dimensionally reduced string theory en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract We examine 4-dimensional string backgrounds compactified over a two-torus. There exist two alternative effective Lagrangians containing each two SL(2)IU(I) sigma-models. Two of these sigma-models are the complex and Kahler structures on the torus. The effective Lagrangians are invariant under two different O(2, 2) groups and by the successive applications of these groups the affine (O) over cap(2,2) Lie algebra emerges. The latter has also a non-zero central term which generates constant Weyl rescalings of the reduced 2-dimensional background. In addition, there exists a number of discrete symmetries relating the field content of the reduced effective Lagrangians. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics en
dc.identifier.isi ISI:A1995TA66000004 en
dc.identifier.volume 360 en
dc.identifier.issue 1-2 en
dc.identifier.spage 19 en
dc.identifier.epage 25 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record