dc.contributor.author |
Kehagias, AA |
en |
dc.date.accessioned |
2014-03-01T01:11:09Z |
|
dc.date.available |
2014-03-01T01:11:09Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0370-2693 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/11554 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0003108115&partnerID=40&md5=14191593d690a702492ed83c3c62469b |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
MAXWELL FIELD EQUATIONS |
en |
dc.subject.other |
SYMMETRIC EINSTEIN EQUATIONS |
en |
dc.subject.other |
STATIONARY |
en |
dc.subject.other |
DUALITY |
en |
dc.subject.other |
MODELS |
en |
dc.subject.other |
SPACE |
en |
dc.title |
Infinite-dimensional algebras in dimensionally reduced string theory |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
We examine 4-dimensional string backgrounds compactified over a two-torus. There exist two alternative effective Lagrangians containing each two SL(2)IU(I) sigma-models. Two of these sigma-models are the complex and Kahler structures on the torus. The effective Lagrangians are invariant under two different O(2, 2) groups and by the successive applications of these groups the affine (O) over cap(2,2) Lie algebra emerges. The latter has also a non-zero central term which generates constant Weyl rescalings of the reduced 2-dimensional background. In addition, there exists a number of discrete symmetries relating the field content of the reduced effective Lagrangians. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
en |
dc.identifier.isi |
ISI:A1995TA66000004 |
en |
dc.identifier.volume |
360 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
19 |
en |
dc.identifier.epage |
25 |
en |